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Chapter 1

Vector Basics

1.1 Overview of Vectors

1.1.1 Cartesian Product
Given two sets X and Y , the Cartesian product of these sets is denoted X×Y
and is defined as the set of all ordered pairs (x, y) such that x ∈ X and y ∈ Y .
Expressed more formally, the Cartesian product of sets X and Y is

X × Y = {(x, y) : x ∈ X, y ∈ Y }.

The Euclidean n-space is the set of ordered n-tuples of real numbers, defined as

Rn = {(x1, x2, . . . , xn) : xi ∈ R, i = 1, . . . , n}.

Similarly, the set of all ordered n-tuples of complex numbers is expressed as

Cn = {(x1, x2, . . . , xn) : xi ∈ C, i = 1, . . . , n}.

1.1.2 Column and Row Vectors
An n-dimensional vector, x, is composed of n scalar values, x1, . . . , xn ∈ C. If
x is a column vector, then it has the following form:

x =

x1

...
xn

 ∈ Cn.

Similarly, if x is an n-dimensional row vector, then it has the following form:

x =
[
x1 . . . xn

]
∈ Cn.

In general, if a vector is given without any indication of whether it is a row or
column vector, it is assumed to be a column vector.
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CHAPTER 1. VECTOR BASICS

I will use 0n to denote the n-dimensional zero vector, which is a column vector
composed of all zeros. Similarly, I will use 1n to denote the n-dimensional ones
vector, which is a column vector composed of all ones.

1.1.3 Vector Transpose
The transpose of a column vector is a row vector with the same elements, and
the transpose of a row vector is the corresponding column vector. The transpose
of a vector x is typically denoted as xT and sometimes as x′. For example,

x =

x1

...
xn

 ⇐⇒ xT =
[
x1 . . . xn

]
and

x =
[
x1 . . . xn

]
⇐⇒ xT =

x1

...
xn

 .
1.1.4 Conjugate Transpose
The conjugate transpose of a vector is defined as its transpose, where all of
its elements have been replaced with their conjugates. The conjugate transpose
of a vector x is typically denoted as x∗. For example,

x =

x1

...
xn

 ⇐⇒ x∗ =
[
x̄1 . . . x̄n

]
and

x =
[
x1 . . . xn

]
⇐⇒ x∗ =

x̄1

...
x̄n

 .

Linear Algebra | S. Pohland



Chapter 2

Vector Subspaces

2.1 Definition of Vector Subspace

2.1.1 Fields
A field is defined as an object consisting of a set of elements and two binary
operations: addition and multiplication. In order for F to be considered a valid
field, its elements must satisfy the following set of axioms.

1. The addition operation must...

(a) be associative (i.e. (α+ β) + γ = α+ (β + γ), ∀α, β, γ ∈ F ),
(b) be commutative (i.e. α+ β = β + α, ∀α, β ∈ F ),
(c) have an identity element 0 (i.e. ∃ 0 ∈ F s.t. α+ 0 = α, ∀α ∈ F ),
(d) and have an inverse (i.e. ∃ − α ∈ F s.t. α+ (−α) = 0, ∀α ∈ F ).

2. The multiplication operation must...

(a) be associative (i.e. (α · β) · γ = α · (β · γ), ∀α, β, γ ∈ F ),
(b) be commutative (i.e. α · β = β · α, ∀α, β ∈ F ),
(c) have an identity element 1 (i.e. ∃ 1 ∈ F s.t. α · 1 = α, ∀α ∈ F ),
(d) and have an inverse (i.e. ∃ α−1 ∈ F s.t. α·α−1 = 1, ∀α ∈ F : α 6= 0).

3. The operations together must...

(a) be distributive (i.e. α · (β + γ) = α · β + α · γ, ∀α, β, γ ∈ F
and (β + γ) · α = β · α+ γ · α, ∀α, β, γ ∈ F ).

Some examples of fields are the real line, R, the complex plane, C, the set
of rational functions in s with coefficients in R, R(s), and the set of rational
functions in s with coefficients in C, C(s).

10
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Some examples of sets that are not fields are the set of integers, Z, the set
of polynomials in s with coefficients in R, R[s], and strictly proper rational
functions in s, RP (s). Not all of the elements in each of these sets have inverses
that are also contained in that set, so these sets are not considered fields.

2.1.2 Vector Spaces
A vector space, which is also referred to as a linear space, is defined as a
set of vectors, V , and a field of scalars, F , equipped with vector addition and
scalar multiplication. In order for (V, F ) to be considered a valid vector space,
its elements must satisfy the following set of axioms.

1. The vector addition operation must...

(a) be associative (i.e. (v1 +v2)+v3 = v1 +(v2 +v3), ∀v1,v2,v3 ∈ V ),

(b) be commutative (i.e. v1 + v2 = v2 + v1, ∀v1,v2 ∈ V ),

(c) have an identity element 0 (i.e. ∃ 0 ∈ V s.t. v + 0 = v, ∀v ∈ V ),

(d) and have an inverse (i.e. ∃ − v ∈ V s.t. v + (−v) = 0, ∀v ∈ V ).

2. The scalar multiplication operation must...

(a) Be associative – (α · β) · v = α · (β · v), ∀α, β ∈ F, ∀v ∈ V
(b) Have a multiplicative identity 1 – ∃ 1 ∈ F s.t. 1 · v = v, ∀v ∈ V
(c) Have an additive identity 0 – ∃ 0 ∈ F s.t. 0 · v = 0, ∀v ∈ V

3. The operations together must...

(a) Be distributive – (α+ β) · v = α · v + β · v, ∀α, β ∈ F, ∀v ∈ V
α · (v1 +v2) = α ·v1 +α ·v1, ∀α ∈ F, ∀v1,v2 ∈ V

(V, F ) is a vector space if and only if the set V is closed under vector addition
and scalar multiplication, meaning that if you perform these operations on any
elements of the vector space, the resulting vector is also within this vector space.
We call this property of vector spaces closure. Written more formally, this says

α1v1 + α2v2 ∈ V, ∀α1, α2 ∈ F, ∀v1,v2 ∈ V.

One common example of a vector space is the space of n-tuples in Fn over the
scalar field F, where F is the field of real numbers R or complex numbers C. An-
other example of a vector space is the set of continuous functions on some inter-
val [t0, t1] over the field of reals, which can be expressed as

(
C
(
[t0, t1],Rn

)
,R
)
.

Similarly, the set of k times differentiable functions on [t0, t1] over the field of
reals,

(
Ck
(
[t0, t1],Rn

)
,R
)
, is a vector space. Note that (Rn,C) is not a vector

space because it is not closed under scalar multiplication.

Linear Algebra | S. Pohland



CHAPTER 2. VECTOR SUBSPACES

2.1.3 Vector Subspaces
Let’s assume (V, F ) is a vector space. The space (W,F ) is considered a vector
subspace of (V, F ) if W is a non-empty subset of V and (W,F ) is closed under
vector addition and scalar multiplication. Written more formally, (W,F ) is a
vector subspace if it satisfies the following two properties:

1. W ⊆ V, W 6= ∅

2. α1w1 + α2w2 ∈W, ∀w1,w2 ∈W, ∀α1, α2 ∈ F

To show that a set is a subspace, we need to show that both of these properties
hold for some vector space V . To show that a set is not a subspace, we simply
need to find one example for which the closure property does not hold.

2.2 Properties of Vector Subspaces

2.2.1 Intersection, Union, and Sum
If W and X are two subspaces of the vector space V , then the intersection of
these two subspaces is defined as

W ∩X = {v ∈ V : v ∈W, v ∈ X}.

Similarly, the union of these two subspaces is defined as

W ∪X = {v ∈ V : v ∈W or v ∈ X}.

If W ∩ X = ∅, meaning that there are no elements shared between the two
subspaces, then we can define the direct sum as

W ⊕X = {w + x : w ∈W, x ∈ X}.

If W ∩X 6= ∅, the sum of these two subspaces is simply defined as

W +X = {w + x : w ∈W, x ∈ X}.

2.2.2 Linear Independence
Let’s assume (V, F ) is a valid vector space. A set of vectors S = {v1, . . . ,vm},
where vi ∈ V for i = 1, . . . ,m, is linearly independent if and only if[

m∑
i=1

αivi = 0n

]
=⇒

[
αi = 0, ∀i = 1, . . . ,m

]
.

This says that S is linearly dependent if and only if there exist scalars αi ∈ F
that are not all equal to zero such that

∑m
i=1 αivi = 0. Note that linear inde-

pendence is with respect to a field. A set of vectors may be linearly independent
over one field but linearly dependent over another field.

Linear Algebra | S. Pohland
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2.2.3 Basis
Suppose (V, F ) is a vector space. The span of the set of vectorsB = {b1, . . . , bm}
is the linear combination of the vectors in B. This can be expressed as

span(B) =

{
m∑
i=1

αibi : αi ∈ F, i = 1, . . . ,m

}
.

A set B = {b1, . . . , bm} is a basis for V if B satisfies two requirements: (1) B
is a linearly independent set and (2) span(B) = V . If B is a basis for V , any
vector in V can be expressed as a linear combination of the vectors in B, i.e.

[v ∈ V ] =⇒

[
v =

m∑
i=1

αibi, αi ∈ F, i = 1, . . . ,m

]
.

The standard basis for the vector space (Rn,R) is B = {e1, e2, . . . , en}, where

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , en =


0
0
...
1

 .
The dimension of a vector space is the number of elements in the basis, which
is m for the example vector space (V, F ) and n for (Rn,R). A subspace can
have infinitely many bases, but the dimension of a given subspace is fixed.

Linear Algebra | S. Pohland



Chapter 3

Vector Inner Products &
Norms

3.1 Vector Inner Products

3.1.1 Properties of Inner Products
Consider the vector space (V, F ). An inner product is a function, denoted
〈·, ·〉, between two vectors, which must satisfy the following properties:

1. 〈x,y + z〉 = 〈x,y〉+ 〈x, z〉, ∀x,y, z ∈ V
〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉, ∀x,y, z ∈ V

2. 〈αx,y〉 = α〈x,y〉, ∀x,y ∈ V, α ∈ F
〈x, αy〉 = ᾱ〈x,y〉, ∀x,y ∈ V, α ∈ F

3. ||x||2 := 〈x,x〉 ≥ 0, ∀x ∈ V
〈x,x〉 = 0⇐⇒ x = 0

4. 〈x,y〉 = 〈y,x〉

5. 〈αx+ βy, γz + δw〉 = ᾱγ〈x, z〉+ β̄γ〈y, z〉+ ᾱδ〈x,w〉+ β̄δ〈y,w〉
∀x,y, z,w ∈ V, α, β, γ, δ ∈ F

3.1.2 Inner Product Spaces
An inner product space is a vector space equipped with an inner product. The
vector space of n-dimensional real-valued vectors, (Rn,R), is an inner product
space equipped with the standard, or Euclidean, inner product:

〈x,y〉Rn = xTy =

n∑
i=1

xiyi.

14
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The vector space of n-dimensional complex-valued vectors, (Cn,C), is an inner
product space equipped with a similar inner product:

〈x,y〉Cn = x∗y =

n∑
i=1

x̄iyi.

3.1.3 Cauchy Schwarz
The Cauchy-Schwarz inequality states that for all vectors x and y in an
inner product space (V, F ) with valid inner product 〈·, ·〉, the following holds:

|〈x,y〉|2 ≤ 〈x,x〉〈y,y〉.

Using the third property of the inner product, we can express this inequality as

|〈x,y〉| ≤ ||x||||y||.

In the above inequalities, equality holds if and only if either x or y are linearly
dependent, meaning one is a scalar multiple of the other.

Proof: We can prove this inequality using properties of the inner product. If x
or y is the zero vector, this inequality hold trivially because both sides of the
inequality will be zero. Let’s then assume that x and y are non-zero.〈

x− 〈x,y〉y
||y||2

,x− 〈x,y〉y
||y||2

〉
≥ 0

〈x,x〉 − 1

||y||2
〈x, 〈x,y〉y〉 − 1

||y||2
〈〈x,y〉y,x〉+

1

||y||4
〈〈x,y〉y, 〈x,y〉y〉 ≥ 0

〈x,x〉 − 1

||y||2
〈x,y〉〈x,y〉 − 1

||y||2
〈x,y〉 〈y,x〉+

1

||y||4
〈x,y〉〈x,y〉 〈y,y〉 ≥ 0

〈x,x〉 − 1

||y||2
〈x,y〉〈x,y〉 − 1

||y||2
〈x,y〉〈x,y〉+

1

||y||4
〈x,y〉〈x,y〉||y||2 ≥ 0

〈x,x〉 − 1

||y||2
|〈x,y〉|2 − 1

||y||2
|〈x,y〉|2 +

1

||y||2
|〈x,y〉|2 ≥ 0

〈x,x〉 − 1

||y||2
|〈x,y〉|2 ≥ 0

〈x,x〉〈y,y〉 ≥ |〈x,y〉|2

From the third inner product property, this inequality becomes an equality iff

x− 〈x,y〉y
||y||2

= 0 ⇐⇒ x =
〈x,y〉
||y||2

y

This says that equality holds if and only if either x or y can be expressed as
scalar multiples of each other, meaning that they are linearly dependent.
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3.2 Vector Norms

3.2.1 Properties of Vector Norms
Consider the vector space (V, F ). In order for a vector function to be considered
a norm, it must satisfy the following three properties:

1. ||x|| ≥ 0, ∀x ∈ V
||x|| = 0⇐⇒ x = 0

2. ||x+ y|| ≤ ||x||+ ||y||, ∀x,y ∈ V

3. ||αx|| = |α|||x||, ∀α ∈ F, ∀x ∈ V

The second property is commonly referred to as the triangle inequality. Vec-
tors also satisfy a similar property called the reverse triangle inequality:

||x− y|| ≥
∣∣∣||x|| − ||y||∣∣∣, ∀x,y ∈ V.

One other property of vector norms is referred to as the parallelogram law
and states that for all vectors x,y ∈ V ,

||x+ y||2 + ||x− y||2 = 2||x||2 + 2||y||2.

Proof: Notice that from the properties of inner products we can write:

||x+ y||2 = 〈x+ y,x+ y〉 = 〈x,x〉+ 〈x,y〉+ 〈y,x〉+ 〈y,y〉
= ||x||2 + ||y||2 + 〈x,y〉+ 〈y,x〉

||x− y||2 = 〈x− y,x− y〉 = 〈x,x〉+ 〈x,−y〉+ 〈−y,x〉+ 〈−y,−y〉
= 〈x,x〉 − 〈x,y〉 − 〈y,x〉+ 〈y,y〉
= ||x||2 + ||y||2 − 〈x,y〉 − 〈y,x〉

Summing together these two sums, we get the desired result:

||x+ y||2 + ||x− y||2 = 2||x||2 + 2||y||2

From the proof of the parallelogram law for an arbitrary vector space, we can
see that if x and y are real-valued vectors, then

||x+ y||2 = ||x||2 + ||y||2 + 2〈x,y〉

and

||x− y||2 = ||x||2 + ||y||2 − 2〈x,y〉.
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3.2.2 lp Norms
Consider the inner product space (Rn,R). Some common vector norms defined
on this vector space are the lp norms, which are defined for 1 ≤ p ≤ ∞ as

||x||p =

(
n∑
i=1

|xi|p
)1/p

.

The l2 norm is the standard Euclidean length, which is defined as

||x||2 =

(
n∑
i=1

|xi|2
)1/2

.

The l1 norm is called the sum-of-absolute values length and is defined as

||x||1 =

n∑
i=1

|xi|.

The l∞ norm is the maximum absolute value of a vector and is sometimes
referred to as the Chebyshev distance. It is defined as

||x||∞ = max
i=1,...,n

|xi|.

To see why the l∞ norm is defined this way, consider the following:(
n∑
i=1

|xi|p
)1/p

≤

(
n∑
i=1

max
i=1,...,n

|xi|p
)1/p

=

(
n max
i=1,...,n

|xi|p
)1/p

= n1/p max
i=1,...,n

|xi|

lim
p→∞

(
n∑
i=1

|xi|p
)1/p

≤ max
i=1,...,n

|xi|

(
n∑
i=1

|xi|p
)1/p

≥
(

max
i=1,...,n

|xi|p
)1/p

= max
i=1,...,n

|xi|

lim
p→∞

( n∑
i=1

|xi|p
)1/p

≥ max
i=1,...,n

|xi|

Therefore, the definition of the l∞ norm we gave is what we would find if we
took the limit of the lp norm as p approaches infinity:

lim
p→∞

||x||p = max
i=1,...,n

|xi| =: ||x||∞.
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3.2.3 lp Norm Balls
The lp norm ball is denoted Bp and is defined a the set of vectors in the
Euclidean space whose lp norm is less than or equal to one, which is written as

Bp = {x ∈ Rn : ||x||p ≤ 1}.

For a two-dimensional vector, we can also define the following more general sets:

{x ∈ R2 : ||x− xc||1 ≤ r} – Diamond with diagonal length 2r and center at xc

{x ∈ R2 : ||x− xc||2 ≤ r} – Circle with diameter 2r and center at xc

{x ∈ R2 : ||x− xc||∞ ≤ r} – Square with side length 2r and center at xc

These sets are visualized in figure 3.1. For a three-dimensional vector, the set
defined above using the l1 norm is an octahedron, the set defined using the l2
norm is a sphere, and the set defined using the l∞ norm is a cube.

Figure 3.1: For a two-dimensional vector x ∈ R2, the l1, l2, and
l∞ norm balls are depicted in the figure above.

3.2.4 Holder’s Inequality
Holder’s inequality says that for any two measurable real-valued or complex-
valued functions f and g and any constants p, q ≥ 1 such that 1

p + 1
q = 1,

||fg||1 ≤ ||f ||p||g||q.

From this general definition of Holder’s inequality, we can say that for any
vectors x,y ∈ Rn and any constants p, q ≥ 1 such that 1

p + 1
q = 1,

|〈x,y〉Rn | =

∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣ ≤
n∑
i=1

|xiyi| ≤ ||x||q||y||p

The last inequality comes from Holder’s inequality because we can express the
third term as ||x�y||1, where x�y is used to denote element-wise multiplication.
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3.2.5 Equivalent Norms
Two vector norms || · ||p and || · ||q on (V, F ) are said to be equivalent if for all
vectors x ∈ V , there exist positive scalar values ml and mu such that

ml||x||p ≤ ||x||q ≤ mu||x||p.

We can show that for the inner product space (Fn,F), where F is the field of real
numbers R or complex numbers C, the l1, l2, and l∞ norms are all equivalent
because they satisfy the following inequalities:

1. ||x||∞ ≤ ||x||1 ≤ n||x||∞

2. ||x||∞ ≤ ||x||2 ≤
√
n||x||∞

3. 1√
n
||x||1 ≤ ||x||2 ≤ ||x||1

Proof: We will first show that the l1 and l∞ norms are equivalent:

||x||1 =

n∑
i=1

|xi| ≥ |xi|, ∀i ∈ [1, n] =⇒ ||x||1 ≥ max
i=1,...,n

|xi| = ||x||∞

||x||1 =

n∑
i=1

|xi| ≤
n∑
i=1

max
i=1,...,n

|xi| =
n∑
i=1

||x||∞ = n||x||∞

Now we will show that the l2 and l∞ norms are equivalent:

||x||2 =

(
n∑
i=1

|xi|2
)1/2

≥ |xi|, ∀i ∈ [1, n] =⇒ ||x||2 ≥ max
i=1,...,n

|xi| = ||x||∞

||x||22 =

n∑
i=1

|xi|2 ≤
n∑
i=1

max
i=1,...,n

|xi|2 =

n∑
i=1

||x||2∞ = n||x||2∞ =⇒ ||x||2 ≤
√
n||x||∞

Finally, we will show that the l1 and l2 norms are equivalent:

||x||21 =

(
n∑
i=1

|xi|

)2

=

n∑
i=1

|xi|2+2
∑
i 6=j

|xi||xj | ≥
n∑
i=1

|xi|2 = ||x||22 =⇒ ||x||1 ≥ ||x||2

Let’s define a new vector x̃ := sign(x) whose elements are defined such that
x̃i = 1 if xi ≥ 0 and x̃i = −1 if xi < 0. Using the Cauchy Schwartz inequality,

|〈x, x̃〉| ≤ ||x||2||x̃||2 =⇒

∣∣∣∣∣
n∑
i=1

xix̃i

∣∣∣∣∣ ≤ ||x||2(
n∑
i=1

|x̃i|2
)1/2

∣∣∣∣∣
n∑
i=1

xisign(xi)

∣∣∣∣∣ ≤ ||x||2(
n∑
i=1

(
sign(xi)

)2)1/2

∣∣∣∣∣
n∑
i=1

|xi|

∣∣∣∣∣ ≤ ||x||2(
n∑
i=1

1
)1/2

=⇒
n∑
i=1

|xi| ≤ ||x||2
√
n =⇒ ||x||1 ≤

√
n||x||2
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3.2.6 Dual Norms
Let || · || be a norm defined on the vector space (Rn,R). The dual of the norm
|| · || is denoted || · ||∗ and is defined for a vector x ∈ Rn as

||x||∗ = sup
z:||z||≤1

xTz.

If the constant p and q satisfy 1 ≤ p, q ≤ ∞ and 1
p + 1

q = 1, then

|| · ||∗q = || · ||p.

Proof: Given 1 ≤ p, q ≤ ∞ and 1
p + 1

q = 1, Holder’s inequality says that

xTz ≤ |xTz| = |〈x, z〉Rn | ≤ ||x||p||z||q.

Because a valid norm is necessarily non-negative, under the constraint ||z||q ≤ 1,
the inner product xTz is maximized when ||z||q = 1. This implies that

||x||∗q = sup
z:||z||q≤1

xTz = ||x||p(1) = ||x||p.

This has important implications for the common lp norms we discussed:

1. ||x||2 = ||x||∗2 = supz:||z||2≤1 x
Tz

2. ||x||∞ = ||x||∗1 = supz:||z||1≤1 x
Tz

3. ||x||1 = ||x||∗∞ = supz:||z||∞≤1 x
Tz

3.2.7 Cardinality
The cardinality of a vector is often called the l0 norm and is denoted ||x||0,
but it is defined differently than the other lp norms. The cardinality of a vector
is the number of nonzero elements, which can be expressed as

card(x) =

n∑
i=1

x̃i where x̃i =

{
1 if xi 6= 0

0 if xi = 0
.

3.3 Orthogonality

3.3.1 Angle Between Vectors
The angle between two vectors x and y is denoted θ and satisfies

cos θ =
〈x,y〉
||x||||y||

.

The angle between two vectors measures the similarity between those vectors.
Values of | cos θ| close to one indicate high levels of similarity, while values of
| cos θ| close to zero indicate low levels of similarity. If cos θ = ±1, then x and y
are parallel or colinear. This also indicates that they are linearly dependent.
If cos θ = 0, then x and y are perpendicular or orthogonal.
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3.3.2 Orthogonal Vectors
Now we will look more at the concept of orthogonality. Two vectors x and y in
an inner product space are orthogonal if 〈x,y〉 = 0. We often use x ⊥ y to
indicate that the vectors x and y are orthogonal to each other. The Pythagoras
theorem says that if two vectors x and y are orthogonal, then

||x+ y||2 = ||x||2 + ||y||2.

Proof: Notice that from the properties of inner products we can write:

||x+ y||2 = 〈x+ y,x+ y〉 = 〈x,x〉+ 〈x,y〉+ 〈y,x〉+ 〈y,y〉
= ||x||2 + ||y||2 + 〈x,y〉+ 〈y,x〉

If x and y are orthogonal, then 〈x,y〉 = 〈y,x〉 = 0, which implies that

||x+ y||2 = ||x||2 + ||y||2.

A set of vectors S = {x1, . . . ,xd} is considered mutually orthogonal if
〈xi,xj〉 = 0 for all i 6= j. Mutually orthogonal vectors are linearly independent
because the angle between each pair of vectors is non-zero. This set of vectors
is called orthonormal if it is mutually orthogonal and each vector has norm
one. Therefore, the set S is orthonormal if for all i and j,

〈xi,xj〉 =

{
0 if i 6= j

1 if i = j
.

3.3.3 Orthogonal Complement
Let’s assume (V, F ) is an inner product space, x is a vector in V , and the set
S is a subset of the set of vectors in the inner product space. The vector x is
orthogonal to the subset S if x ⊥ y for all y in S. Note that if x is orthogonal to
the set Rn or Cn, then x must be the n-dimensional zero vector, 0n. The set of
vectors in V that are orthogonal to S make up the orthogonal complement
of S, which we denote as S⊥. We can express this set mathematically as

S⊥ = {x ∈ V : 〈x,y〉 = 0, ∀y ∈ S}.

From this definition of the orthogonal complement, we can see that

x ⊥ y, ∀x ∈ S, y ∈ S⊥.

For any subset S ⊆ V , we know S ∩S⊥ = ∅ and V = S⊕S⊥. This implies that
the dimension of the set of vectors V is given by dimV = dimS + dimS⊥.
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3.3.4 Gram Schmidt Orthonormalization
Given a collection of basis vectors B = {b1, . . . , bm} for an inner product space
with the set of vectors V = span(B), we can construct an orthonormal basis.
To find the orthonomal basis {c1, . . . , cm}, we will go through an iterative
process called the Gram-Schmidt orthonormalization procedure:

1. Initialize k = 2 and y1 = b1. Set c1 = y1

||y1|| .

2. Define yk = bk −
∑k−1
i=1 〈ci, bk〉ci

3. If yk 6= 0, then set ck = yk

||yk|| . Otherwise, let ck = 0.

4. If the set B has not been exhausted, increment k and move to step 2.
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Projections

4.1 Projection onto a Subspace
The goal of projection is to find a point in a given set that is closest in norm
to a given point that is not in the desired set. Given a vector x in an inner
product space X and a closed set S ⊆ X , the projection of x onto S is

ΠS(x) = arg min
y∈S

||y − x||.

I will generally assume that X is the Euclidean space (or some subset of the
Euclidean space) and the norm defined in the projection equation is the l2 norm.

4.1.1 Projection Theorem
For a vector x in a Euclidean set X and a closed set S ⊆ X , the projection
theorem says that there always exists a unique solution to the following:

x̂ = arg min
y∈S

||y − x||2 = arg min
y∈S

||y − x||22.

Moreover, a necessary and sufficient condition for x̂ being optimal is

1. x̂ ∈ S, and

2. (x− x̂) ⊥ S.

Proof: To prove the projection theorem, recall that if S⊥ is the orthogonal
complement of S, then any x ∈ X can be expressed as x = u+ z, where u ∈ S
and z ∈ S⊥. We can then express the objective in the projection problem as

||y−x||22 = ||y− (u+ z)||22 = ||(y−u)− z||22 = ||y−u||22 + ||z||22− 2〈y−u, z〉.
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Because we assume that y ∈ S and u ∈ S are both elements of a vector subspace
S, we know that (y − u) ∈ S. We also assumed that z ∈ S⊥, so we can write
z ⊥ (y − u), which implies that 〈y − u, z〉 = 0. Now the objective becomes

||y − x||22 = ||y − u||22 + ||z||22.

With this new objective function, the projection problem becomes

x̂ = arg min
y∈S

||y − u||22 + ||z||22.

The term ||z||22 is a constant that does not depend on y, so

x̂ = arg min
y∈S

||y − u||22.

Now we can see that the optimal solution for this problem is simply x̂ = u.
Recall that we defined x such x = u+z, where u ∈ S and z ∈ S⊥. This allows
us to write x− x̂ = z, so (x− x̂) ∈ S⊥ or equivalently (x− x̂) ⊥ S.

4.2 Common Projections
There are some common projection problems whose solutions are good to know.
Among these are projections onto a one-dimensional line, onto a two-dimensional
hyperplane, and onto a subspace defined by a span of vectors.

4.2.1 Projection onto a Line
Suppose we are interested in projecting a point x ∈ Rn onto a line

L = {y ∈ Rn : y = x0 + λv, λ ∈ R},

which passes through the point x0 ∈ Rn in the direction v ∈ Rn. This problem
can be expressed as the following optimization problem:

x̂ = arg min
y∈L

||y − x||2.

Using the projection theorem, we know x̂ ∈ L and (x − x̂) ⊥ L. Given that
x̂ ∈ L, there is some constant λ̂ ∈ R such that x̂ = x0+λ̂v. Because (x−x̂) ⊥ L,
we can also write vT (x− x̂) = 0. Combining these facts, we can notice that

0 = vT (x−x̂) = vT
(
x−(x0+λ̂v)

)
= vTx−vTx0−λ̂vTv =⇒ λ̂ =

vT (x− x0)

vTv

x̂ = x0 + λ̂v = x0 +
vT (x− x0)

||v||22
v
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4.2.2 Projection onto a Hyperplane
Suppose we are interested in projecting a point x ∈ Rn onto a hyperplane

H = {y ∈ Rn : aTy = b},

where a ∈ Rn is the normal vector and b ∈ R is the offset. This problem can be
expressed as the following optimization problem:

x̂ = arg min
y∈H

||y − x||2

Using the projection theorem, we know x̂ ∈ H and (x − x̂) ⊥ H. Given that
x̂ ∈ H, the vector must satisfy aT x̂ = b. Because (x − x̂) ⊥ H and the vector
a is normal to the hyperplane H, there is some constant α ∈ R such that
(x− x̂) = αa. Combining these facts, we can determine the following:

aT (x− x̂) = aT (αa)

aTx− b = αaTa

α =
aTx− b
aTa

=
aTx− b
||a||22

x̂ = x− αa = x− a
Tx− b
||a||22

a

We can also notice that the distance from the point x to the hyperplane H is

d = ||x− x̂||2 = ||αa||2 = |α|||a||2 =
|aTx− b|
||a||22

||a||2 =
|aTx− b|
||a||2

.

4.2.3 Projection onto a Vector Span
Suppose we are interested in projecting a point x ∈ X onto a subspace S ⊆ X ,
which is defined as the span of a set of arbitrary vectors:

S = span(v1, . . . ,vd).

Using the projection theorem, we know x̂ ∈ S and (x − x̂) ⊥ S. We can
equivalently write these two conditions as the following:

x̂ =

d∑
i=1

αivi for some αi ∈ R, i = 1, . . . , d, and

〈x− x̂,vi〉 = 0 for i = 1, . . . , d.

From the second condition, we can notice that

vTk (x− x̂) = 0, which implies vTkx = vTk x̂ for k = 1, . . . , d.
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Combining this with our first condition, we can see that

vTkx = vTk

(
d∑
i=1

αivi

)
=

d∑
i=1

αiv
T
k vi for k = 1, . . . , d.

Now we have a system of d equations and d unknowns: α1, . . . , αd. From this
system of equations, we can solve for α1, . . . , αd, and then express x̂ as

x̂ =

d∑
i=1

αivi.

If we assume v1, . . . ,vd are orthonormal, we can find a more precise solution.
Recall that if v1, . . . ,vd are orthonormal, their inner products are given by

vTk vi =

{
1 if i = k

0 otherwise
.

Now the system of equations we wrote for an arbitrary set of vectors becomes

vTkx = vTk

(
d∑
i=1

αivi

)
=

d∑
i=1

αiv
T
k vi = αk for k = 1, . . . , d.

Now we can easily determine the value of each of the constants α1, . . . , αd, which
allows us to express the optimal solution, x̂, as

x̂ =

d∑
i=1

αivi =

d∑
i=1

(vTi x)vi.
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Chapter 5

Matrix Basics

5.1 Overview of Matrices
An m × n matrix A is composed of m n-dimensional row vectors and n m-
dimensional column vectors. I will denote the ith row aTi , the jth column aj ,
and the ijth element aij . In general, an m× n matrix A has the form

A =

— aT1 —
...

— aTm —

 =

 | |
a1 . . . an

| |

 =

a11 . . . a1n

...
. . .

...
am1 . . . amn

 ∈ Fm×n,

where F is the field of real numbers R or complex numbers C.

5.1.1 Matrix Product
If A ∈ Fm×n and B ∈ Fn×p, we can multiply these two matrices together,
resulting in an m× p matrix. We multiply the matrices in the following way:

AB =

— aT1 —
...

— aTm —


 | |
b1 . . . bn
| |

 =

a
T
1 b1 . . . aT1 bn
...

. . .
...

aTmb1 . . . aTmbn

 .
Each element of the resulting matrix AB can be expressed as

(AB)ij =

n∑
k=1

aikbkj .

5.1.2 Matrix Transpose
The transpose of a matrix A shown previously can be expressed

AT =

 | |
a1 . . . am

| |

 =

— aT1 —
...

— aTn —

 =

a11 . . . am1

...
. . .

...
a1n . . . amn

 ∈ Fn×m.
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The matrix transpose has the following properties:

1. (AB)T = BTAT

2. (A1A2 . . .Ap)T = AT
p . . .A

T
2A

T
1

3.
[
A B
C D

]T
=

[
AT CT

BT DT

]
The complex conjugate transpose, or Hermitian transpose, of the matrix A is

A∗ =

— a∗1 —
...

— a∗n —

 =

ā11 . . . ām1

...
. . .

...
ā1n . . . āmn

 ∈ Fn×m.

5.1.3 Range and Null Space
Consider an m× n matrix A ∈ Fm×n. The range space, which is also known
as the column space, image, or span, of the matrix A is defined as

R(A) = {y ∈ Fm : y = Ax, x ∈ Fn} ⊆ Fm.

The row space of the matrix A is defined as

Row(A) = {z ∈ Fn : z = ATx, x ∈ Fm} ⊆ Fn.

The null space, or kernel, of the matrix A is defined as

N(A) = {x ∈ Fn : Ax = 0m} ⊆ Fn.

Note that the range space ofAT is the same as the row space ofA. Additionally,
the orthogonal complement of the null space of A is the row space of A.

The rank of matrix A is defined as the dimension of the range space, and the
nullity of A is defined as the dimension of the null space. Because the range
space is a subset of Fm, the rank is less than or equal m. Similarly, because the
null space is a subset of Fn, the nullity is less than or equal to n.

5.1.4 Elementary Operations
There are three elementary row operations performed on matrices:

1. interchange two rows of the matrix,

2. multiply a row by a non-zero constant, and

3. add one row to another row.
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Elementary row operations are equivalent to pre-multiplying a matrix A by a
left elementary matrix L, which is obtained by performing the desired operations
on the identity matrix. Note that the null space of the transformed matrix is
the same as the null space of the original matrix (i.e. N(LA) = N(A)).

Similarly, there are three elementary column operations performed on matrices:

1. interchange two columns of the matrix,

2. multiply a column by a non-zero constant, and

3. add one column to another column.

Elementary column operations are equivalent to post-multiplying a matrix A
by a right elementary matrix R, which is obtained by performing the desired
operations on the identity matrix. The range space of the transformed matrix
is the same as the range space of the original matrix (i.e. R(AR) = R(A)).

5.1.5 Hadamard Product
Given two m× n matrices A and B, their Hadamard product is the m× n
matrix resulting from the element-wise product of the entries of the matrices
and is denoted A ◦B. From this definition, the ijth element of A ◦B is

(A ◦B)ij = aijbij .

5.2 Special Matrices
There are a number of different types of matrices with unique properties. Some
of the most useful types of special matrices are listed below.

1. Sparse – A matrix is sparse if most of the elements in the matrix are 0.

2. Square – A matrix is square if it has the same number of rows as columns.

3. Symmetric – A square matrixA is symmetric if it is equal to its transpose
(i.e. A = AT ), meaning aij = aji for all i and j.

4. Skew Symmetric – A square matrix A is skew symmetric if it is equal
to the negative of its transpose (i.e. A = −AT ), meaning aij = −aji for
all i and j. Note that all the diagonal entries, aii, must be zero.

5. Hermitian – A square matrix A is Hermitian if it is equal to its complex
conjugate transpose (i.e. A = A∗), meaning aij = āji for all i and j.

6. Diagonal – A square matrix A is diagonal if all of its nonzero elements
are along its diagonal, meaning aij = 0 if i 6= j. For example,

A = diag(a) = diag(a1, . . . , an) =

a1

. . .
an

 .
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The most popular diagonal matrix is the identity matrix whose diagonal
elements are all one. I denote the n× n identity matrix as In.

7. Upper Triangular – A square matrix A is upper triangular if all of its
nonzero elements fall on or above the main diagonal, meaning aij = 0 if
i > j. We can express a general upper triangular matrix as

A =

a11 . . . a1n

. . .
...
ann

 .

8. Lower Triangular – A square matrix A is lower triangular if all of its
nonzero elements fall on or below the main diagonal, meaning aij = 0 if
i < j. We can express a general lower triangular matrix as

A =

a11

...
. . .

an1 . . . ann

 .

9. Unitary – A matrix U is unitary if its columns form an orthonormal basis
for Cn. A unitary matrix generally has the form

U =
[
u1 . . . un

]
, where u∗iuj =

{
1 if i = j

0 otherwise
.

Unitary matrices must satisfy the property U∗U = UU∗ = In. From
this property, we can also notice that multiplying a vector by a unitary
matrix preserves the length of the vector. To see this, notice that

||Ux||22 = (Ux)∗(Ux) = x∗U∗Ux = x∗Inx = x∗x = ||x||22.

10. Orthogonal – A matrixU is orthgonal if its columns form an orthonormal
basis for Rn. An orthogonal matrix generally has the form

U =
[
u1 . . . un

]
where uTi uj =

{
1 if i = j

0 otherwise
.

Orthogonal matrices must satisfy the property UTU = UUT = In. From
this property, we can also notice that multiplying a vector by an orthogonal
matrix preserves the length of the vector. To see this, notice that

||Ux||22 = (Ux)T (Ux) = xTUTUx = xT Inx = xTx = ||x||22.
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11. Dyad – A matrix is a dyad if it is the outer product of two vectors. An
m×n matrix A is a dyad if it can be expressed as A = uvT , where u ∈ Fm
and v ∈ Fn. The rank of a dyad is always equal to one and any rank one
matrix can be expressed as the outer product of two nonzero vectors.

12. Square Dyad – A square dyad is a square matrix that can be expressed
as the outer product of two vectors. An n× n matrix A is a square dyad
if it can be expressed as A = uvT , where u ∈ Fn and v ∈ Fn.

13. Nilpotent – A square matrix A is nilpotent if Ak = 0 for some positive
integer k. The smallest such k is called the index, or degree, of A.

5.2.1 Block Matrices
Block matrices can be broken into submatrices or blocks. There are a number
of different types of block matrices with unique properties. Some of the most
useful types of block matrices are listed below.

1. Block Diagonal – A square matrix is block diagonal if its diagonal blocks
are square matrices of any size and the off-diagonal blocks are all zero
matrices. A block diagonal matrix generally has the form

A =

A1

. . .
An

 .

2. Block Upper Triangular – A matrix is block upper triangular if all of
its nonzero blocks fall on or above its diagonal. A block upper triangular
matrix generally has the form

A =

A11 . . . A1n

. . .
...

Ann

 .

3. Block Lower Triangular – A matrix is block lower triangular if all of
its nonzero blocks fall on or below its diagonal. A block lower triangular
matrix generally has the form

A =

A11

...
. . .

An1 . . . Ann

 .
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Square Matrices

6.1 Trace
The trace is a property that is only defined for square matrices. The trace of
an n× n matrix A is the sum of its diagonal elements, which is expressed as

tr(A) =

n∑
i=1

aii.

For two n×n matrices A and B and a scalar α, the trace satisfies the following:

1. tr(A) = tr(AT )

2. tr(αA) = αtr(A)

3. tr(AB) = tr(BA)

4. tr(A+B) = tr(A) + tr(B)

Another important property of the trace is the cyclic property, which says
that the trace is invariant under cyclic perumuations. For example, for the
matrices A ∈ Rm×n, B ∈ Rn×p, and C ∈ Rp×m, the cyclic property says

tr(ABC) = tr(BCA) = tr(CAB).

Note that arbitrary permutations are generally not allowed. For example, for
the matrices A ∈ Rm×n, B ∈ Rn×p, and C ∈ Rp×m, we can notice that

tr(ABC) 6= tr(ACB).

However, if A, B, and C are all symmetric, then we can see that

tr(ABC) = tr
(

(ABC)T
)

= tr(CTBTAT ) = tr(CBA) = tr(ACB).
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6.2 Determinant
Another useful property that is only defined for square matrices is the deter-
minant. If we define A(i,j) as the (n − 1) × (n − 1) submatrix of A obtained
by eliminating row i and column j from A, then the determinant of A is

det(A) =

n∑
j=1

(−1)i+jdet(A(i,j))aij .

For two n× n matrices A and B and a scalar α, the determinant satisfies:

1. det(In) = 1

2. det(A) = det(AT )

3. det(A−1) = 1
det(A)

4. det(αA) = αndet(A)

5. det(AB) = det(BA) = det(A)det(B)

In general, the determinant of a matrix can be difficult to compute, but it is
straightforward for 2× 2 and 3× 3 matrices. If A is a 2× 2 matrix given by

A =

[
a11 a12

a21 a22

]
,

then its determinant is simply det(A) = a11a22−a12a21. If A is the 3×3 matrix

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,
then its determinant can be expressed as

det(A) = a11det
[
a22 a23

a32 a33

]
− a12det

[
a21 a23

a31 a33

]
+ a13det

[
a21 a22

a31 a32

]
= a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31).

6.3 Adjugate
Recall that we defined A(i,j) as the (n− 1)× (n− 1) submatrix of A obtained
by eliminating row i and column j from A. The adjugate of a square matrix
n× n matrix A is defined component-wise as(

adj(A)
)
ij

= (−1)i+jdet(A(i,j)).
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6.4 Matrix Inverse
A square matrix A ∈ Fn is said to be invertible, or non-singular, if its
determinant is nonzero. This is equivalent to saying that the columns of A
form a basis for Fn or, equivalently, the rows of A form a basis for Fn. The
inverse of an invertible n×n matrix A is denoted A−1 and is defined such that

AA−1 = A−1A = In.

The inverse of A can be expressed in terms of its adjugate and determinant as

A−1 =
1

det(A)
adj(A)

For two n× n matrices A and B, the matrix inverse satisfies the following:

1. (AB)−1 = B−1A−1

2. (AT )−1 = (A−1)T

6.4.1 Inverse of Block Matrices
1. Block Diagonal – Consider a block diagonal matrix

A =

A1

. . .
An

 .
A is invertible if and only if each of its diagonal blocks are invertible.
When all of its blocks are invertible, the inverse of A inverse is

A−1 =

A
−1
1

. . .
A−1

n

 .
2. Block Upper Triangular – Consider a block upper triangular matrix

A =

[
A11 A12

0 A22

]
.

A is invertible if and only if its diagonal blocksA11 andA22 are invertible.
If both of its diagaonal blocks are invertible, the the inverse of A is

A−1 =

[
A−1

11 −A−1
11A12A

−1
22

0 A−1
22

]
.
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3. Block Lower Triangular – Consider a block lower triangular matrix

A =

[
A11 0
A21 A22

]
.

A is invertible if and only if its diagonal blocksA11 andA22 are invertible.
If both of its diagaonal blocks are invertible, the the inverse of A is

A−1 =

[
A−1

11 0
−A−1

22A21A
−1
11 A−1

22 .

]

6.5 Additional Properties

6.5.1 Sylvester’s Determinant Theorem
Sylvester’s determinant theorem states that forA ∈ Rm×n andB ∈ Rn×m,

det(Im +AB) = det(In +BA).

From this theorem, we can also derive the following consequences:

1. For two column vectors u ∈ Rm and v ∈ Rm,

det(Im + uvT ) = det(1 + vTu) = 1 + vTu.

2. For A ∈ Rm×n, B ∈ Rn×m, and an invertible matrix X ∈ Rm×m,

det(X +AB) = det
(
X(Im +X−1AB)

)
= det(X) det(Im +X−1AB)

= det(X) det(In +BX−1A).

3. For column vectors u,v ∈ Rm and an invertible matrix X ∈ Rm×m,

det(X + uvT ) = det
(
X(Im +X−1uvT )

)
= det(X) det(Im +X−1uvT )

= det(X) det(1 + vTX−1u) = det(X)(1 + vTX−1u)

= det(X) + vT det(X)X−1u = det(X) + vT adj(X)u.

6.5.2 Determinant of Block Matrices
There are also special properties of the determinant for block matrices composed
of four submatrices: A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, and D ∈ Rm×m.

1. For an upper triangular, lower triangular, or diagonal matrix,

det

[
A 0
C D

]
= det

[
A B
0 D

]
= det

[
A 0
0 D

]
= det(A) det(D).
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2. If A is invertible, then

det

[
A B
C D

]
= det(A) det(D −CA−1B).

If D is invertible, then

det

[
A B
C D

]
= det(D) det(A−BD−1C).

3. If the blocks are square matrices of the same size (i.e. n = m) and C and
D commute (i.e. CD = DC), then

det

[
A B
C D

]
= det(AD −BC).

4. If A = D and B = C, then regardless of whether A and B commute,

det

[
A B
B A

]
= det(A−B) det(A+B).

6.6 Eigenvalues and Eigenvectors
If A is an n×n matrix, then it has n eigenvalues, λi ∈ C for i = 1, . . . , n, and
n (right) eigenvectors, ui ∈ Cn for i = 1, . . . , n, which satisfy

Aui = λiui, i = 1, . . . , n.

This relationship can be equivalently expressed as

(λiIn −A)ui = 0n, i = 1, . . . , n.

A also has n left eigenvectors, vTi ∈ Cn for i = 1, . . . , n, which satisfy

vTi A = λiv
T
i , i = 1, . . . , n.

This relationship can be equivalently expressed as

vTi (λiIn −A) = 0n, i = 1, . . . , n.

6.6.1 Characteristic Polynomial
The characteristic polynomial of an n× n matrix A is denoted χA and is a
polynomial of degree n in s, which is defined such that

χA(s) = det(sIn −A).

The eigenvalues of A are the roots are the characteristic polynomial, which
means that if λi is an eigenvalue of A, then χA(λi) = 0. The set of eigenvalues
of A is called the spectrum of A and is often denoted λ(A) = {λ1, . . . , λn}.
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Any n×n matrix A has n eigenvalues, λ1, . . . , λn, but some of these eigenvalues
may be repeated. Suppose that the first k eigenvalues of A are distinct, where
k ≤ n. Each of these k eigenvalues has an associated algebraic multiplicity
µi ≥ 1, and all of the multiplicities must sum to the total number of eigenvalues
(i.e.

∑k
i=1 µi = n). The characteristic polynomial of A can be expressed as

χA(s) = (s− λ1)µ1(s− λ2)µ2 . . . (s− λk)µk .

6.6.2 Eigenspaces
For each distinct eigenvalue, λi, there is a corresponding subspace of eigenvectors
called the eigenspace, which is denoted φi and is defined as

φi = N(λiIn −A) = {x ∈ Cn : (λiIn −A)x = 0n}.

If an eigenvector ui is an element of the eigenspace φi, then (λiIn−A)ui = 0n.
Within a given eigenspace, there are a infinitely many linearly dependent eigen-
vectors and finitely many linearly independent eigenvectors. If two eigenvectors
are in two different eigenspaces, then they are linearly independent.

Each eigenvalue λi with multiplicity µi has µi linearly independent base eigen-
vectors and generalized eigenvectors. While base eigenvectors are an element
of the null space of (λiIn −A), generalized eigenvectors are an element of the
null space of (λiIn −A)j , where j is an integer greater than one. Generalized
eigenvectors are covered in more detail in the Jordan form section.

Note that for any n× n matrix A with eigenvalue λi, we can write

N
(
(λiIn −A)j

)
⊆ N

(
(λiIn −A)j+1

)
dimN

(
(λiIn −A)j

)
≤ dimN

(
(λiIn −A)j+1

)
6.6.3 Minimum Polynomial
The characteristic equation of A is given by χA(s) = 0, where χA is the
characteristic polynomial. The Cayley Hamilton theorem says that every
square matrix satisfies its own characteristic equation. This means that if an
n× n matrix A admits the characteristic polynomial χA(s), then χA(A) = 0.

The minimum polynomial of A, which we denote ψA, is the polynomial of
least degree degree that satisfies ψA(A) = 0. We call the equation ψA(s) = 0
the minimum equation. The minimum polynomial has the general form

ψA(s) = (s− λ1)m1(s− λ2)m2 . . . (s− λk)mk ,

where 0 < mi ≤ µi for i = 1, . . . , k. From the minimum polynomial, we can say
the following about the eigenspaces of A:

Cn = N
(

(A− λ1In)m1

)
⊕ . . .⊕N

(
(A− λkIn)mk

)
dimN

(
(A− λiIn)mi

)
= µi, i = 1, . . . , k
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6.6.4 Trace & Determinant
The trace and determinant of a matrix are closely related to the eigenvalues of
the matrix. If A is an n×n matrix whose eigenvalues are λi, i = 1, . . . , n, then

tr(A) =

n∑
i=1

λi and det(A) =

n∏
i=1

λi.

This gives us the following relationships between trace and determinant:

det
(
exp(A)

)
= exp

(
tr(A)

)
and tr

(
log(A)

)
= log

(
det(A)

)
.

6.6.5 Similar Matrices
Two n × n matrices A and B are considered similar matrices if there exists
an invertible n× n matrix P such that

A = PBP−1.

The map B 7→ PBP−1 is called a similarity transformation. Any similarity
transformation can be represented by a series of elementary row and column
operations. Similar matrices have the same eigenvalues, which also implies that
they have the same rank, determinant, and trace.

6.6.6 Special Matrices
1. Real-Valued – If A has all real entries, it can still have complex eigen-

values. However, its complex eigenvalues must form a pair of complex
conjugates and the corresponding eigenvectors will also be conjugate pairs.

2. Symmetric – If A is an n×n symmetric matrix with all real entries, then
it has n real eigenvalues. Additionally, it has n orthogonal eigenvectors.

3. Diagonal – If A is a diagonal matrix, then its eigenvalues are simply its
diagonal entries. This also implies that its determinant is the product of
its diagonal elements. In addition, the standard basis vectors, e1, . . . , en,
form a set of n orthogonal eigenvectors for A.

4. Upper/Lower Triangular – If A is upper or lower triangular, then
its eigenvalues are simply its diagonal entries. This also implies that its
determinant is the product of its diagonal elements. In addition, the
standard basis vectors form a set of n orthogonal eigenvectors for A.

5. Square Dyad – If A is a square dyad that can be expressed as A = uvT ,
it has one non-zero eigenvalue λ = vTu with corresponding eigenvector u.

6. Block Diagonal – If A is a block diagonal matrix, its eigenvalues are the
union of the eigenvalues of each block along its diagonal. This implies that
its determinant is the product of the determinant of each of its diagonal
blocks, and its trace is the sum of the trace of each of its diagonal blocks.
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7. Block Upper/Lower Triangular – If A is a block upper or lower trian-
gular matrix, then its eigenvalues are the union of the eigenvalues of each
block along its diagonal. This implies that its determinant is the product
of the determinant of each of its diagonal blocks, and its trace is the sum
of the trace of each of its diagonal blocks.

6.7 Diagonal Form
Suppose A is an n× n matrix whose eigenvalues are λ1, . . . , λn and whose cor-
responding eigenvectors are u1, . . . ,un. A is diagonalizable if and only if A
has n linearly independent eigenvectors. Note that if A has n distinct eigenval-
ues, then it has n linearly independent eigenvectors, but this is not a necessary
condition. The eigenvalues and eigenvectors of A must satisfy Aui = λiui for
i = 1, . . . , n. We can combine these equations into a single matrix equation:

A

 | |
u1 . . . un

| |

 =

 | |
u1 . . . un

| |


λ1

. . .
λn

 .
Now we can define the following matrices to simplify our expression:

U =

 | |
u1 . . . un

| |

 ∈ Cn×n and Λ =

λ1

. . .
λn

 ∈ Cn×n.

This allows us to write the previous matrix equation as AU = UΛ. Because
the matrix U is composed of n linearly independent eigenvectors, it is invertible.
This allows us to express A in its diagonal form:

A = UΛU−1.

Now let’s define U−1 as the matrix V , which can be expressed as

V =

— vT1 —
...

— vTn —

 ∈ Cn×n,= .

Now we have the following matrix equation: A = V −1ΛV . Because V −1 is
invertible, we can also express this equation as V A = ΛV , or equivalently— vT1 —

...
— vTn —

A =

λ1

. . .
λn


— vT1 —

...
— vTn —

 .
We can break this matrix equation into n independent equations: vTi A = λiv

T
i

for i = 1, . . . , n. Now we can see that vTi is a left eigenvector ofA. Therefore, for
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an n×n diagonalizable matrix A with eigenvalues λ1, . . . , λn, right eigenvectors
u1, . . . ,un, and left eigenvectors vT1 , . . . ,vTn , we can express A as

A =

 | |
u1 . . . un

| |


λ1

. . .
λn


— vT1 —

...
— vTn —

 .
If Λ is a diagonal matrix whose diagonal entries are the eigenvectors of A, U
is an orthogonal matrix whose columns are the right eigenvectors of A, V is an
orthogonal matrix columns are the left eigenvectors of A, then

A = UΛV .

This also allows us to express the matrix A as a sum of dyads:

A =

n∑
i=1

λiuiv
T
i .

6.7.1 Matrix Inverse & Product
The diagonal form is useful because diagonal matrices have some important
properties. As mentioned previously, the eigenvalues of a diagonal matrix are
simply the elements along its diagonal. This means that the determinant of a di-
agonal matrix is the product of its diagonal entries. If a matrix is diagonalizable,
we can use its diagonal form to more easily compute matrix inverses.

A−1 = (UΛU−1)−1 = UΛ−1U−1

Λ−1 =


1
λ1

. . .
1
λn


In a similar way, if a matrix is diagonalizable, we can use its diagonal form to
more easily compute matrix products.

Ak = (UΛU−1)k = UΛkU−1

Λk =

λ
k
1

. . .
λkn


6.8 Jordan Form
We cannot always diagonalize a square matrix A ∈ Rn×n because A may not
have n linearly independent columns. However, given any matrix A ∈ Rn×n,
we can transform it into Jordan canonical form by the similarity transform
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A = TJT−1, where T is an invertible matrix whose columns are the base and
generalized eigenvectors of A and J is a block diagonal matrix of the form

J =

J1

. . .
Jl

 , where Ji =


λi 1

. . . . . .
λi 1

λi

 .

6.8.1 Obtaining the Jordan Form
To find the Jordan form of A ∈ Rn×n, we go through the following procedure:

1. Find all of the eigenvalues of A, λ1, . . . , λn, by computing the roots of the
characteristic polynomial χA(s) = det(sI −A).

2. For each distinct eigenvalue λi,

(a) Find all of the linearly independent base eigenvectors u1, . . . ,uci by
solving the equation (A− λiIn)uj = 0n, where j = 1, . . . , ci.

(b) For each base eigenvector uj , compute the generalized eigenvectors:
i. Check if there is a solution to (A − λiIn)w1

j = uj . If there is,
find w1

j . If there is not, look at the next eigenvector.
ii. Continue finding generalized eigenvectors by solving (A−λiIn)wl

j =

wl−1
j such that wl

j and wl−1
j are linearly independent.

3. Construct T using the eigenvectors and generalized eigenvectors such that

T =
[
u1 w1

1 . . . u2 w1
2 . . .

]
.

4. Construct the blocks of J with the eigenvalues λi along the diagonal,
corresponding to each base eigenvector, and ones along the upper off-
diagonal, corresponding to each generalized eigenvector.

6.8.2 Jordan Form & Minimum Polynomial
The Jordan form of a matrix is also closely related to its characteristic and
minimum polynomial. Consider a square matrix A ∈ Rn×n with the Jordan
form A = TJT−1, whose characteristic and minimum polynomial are given by

χA(s) = (s− λ1)µ1(s− λ2)µ2 . . . (s− λk)µk

and

ψA(s) = (s− λ1)m1(s− λ2)m2 . . . (s− λk)mk .

These two polynomials tell us the following about the Jordan matrix J :

1. µi = sum of sizes of the Jordan blocks corresponding to eigenvalue λi

2. mi = size of largest Jordan block corresponding to eigenvalue λi

3. number of linearly independent eigenvectors = number of Jordan blocks
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6.9 Matrix Functions

6.9.1 Polynomial Matrix Functions
If p is a polynomial function in s defined such that

p(s) = ams
m + am−1s

m−1 + . . .+ a1s+ a0,

then we can expand this definition for a square matrix A and express p(A) as

p(A) = amA
m + am−1A

m−1 + . . .+ a1A+ a0.

If (λi,ui) is an eigenvalue-eigenvector pair for the matrix A, then (p(λi),ui)
is an eigenvalue-eigenvector pair for the matrix p(A). This leads to the eigen-
value shift rule, which says if λi(A) is the ith eigenvalue of the matrix A,

λi(A+ αIn) = λi(A) + α.

If the n × n matrix A is diagonalizable and admits a diagonal factorization of
the form A = UΛU−1, then we can express p(A) as

p(A) = Up(Λ)U−1, where p(Λ) =

p(λ1)
. . .

p(λn)

 .
6.9.2 Cayley Hamilton Theorem
Recall that the Cayley Hamilton theorem says that every square matrix satisfies
its own characteristic equation. This means that if the matrixA ∈ Rn×n admits
the characteristic polynomial

χA(s) = sn + α1s
n−1 + . . .+ αn−1s+ αn,

then the Cayley Hamilton theorem tells us that

χA(A) = An + α1A
n−1 + . . .+ αn−1A+ αnI = 0.

The Cayley Hamilton theorem is useful because it allows us to write any poly-
nomial function of A as a function of order n− 1 or less. This is because

An = −α1A
n−1 − . . .− αn−1A− αnI

An+1 = A(An) = A
(
−α1A

n−1 − . . .− αn−1A− αnI
)

= −α1A
n − . . .− αn−1A

2 − αnA
= −α1

(
−α1A

n−1 − . . .− αn−1A− αnI
)
− . . .− αn−1A

2 − αnA
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6.9.3 Analytic Matrix Functions
If f is an analytic function in s, it can be expressed as a convergent power series:

f(s) =

∞∑
n=0

an(s− s0)n = a0 + a1(s− s0) + a2(s− s0)2 + . . .

Some examples of analytic functions are polynomials, exponential functions,
trigonometic functions, logarithms, and power functions. There are other types
of analytic functions, but these are the most common. We can expand the
definition of analytic functions for a square matrix A and express f(A) as

f(A) =

∞∑
n=0

an(A−A0)n = a0I + a1(A−A0) + a2(A−A0)2 + . . .

The spectral mapping theorem states that if f is an analytic function and
A is a square matrix with eigenvalues λ(A), then the eigenvalues of f(A) are
f(λ(A)). Additionally, ifA is diagonalizable and admits a diagonal factorization
of the form A = UΛU−1, then f(A) can be expressed as

f(A) = Uf(Λ)U−1, where f(Λ) =

f(λ1)
. . .

f(λn)

 .
IfA is not diagonalizable, we can represent it in its Jordan form asA = TJT−1.
If we define f (k)(λi) = ∂k

∂sk
f(s)|s=λi , then we can express f(A) as

f(A) = T f(J)T−1, where f(J) =

f(J1)
. . .

f(Jl)

 and

f(Ji) =


f(λi) f ′(λi) . . . 1

(ni−1)!f
(ni−1)(λi)

0 f(λi) . . . 1
(ni−2)!f

(ni−2)(λi)
...

...
. . .

...
0 0 . . . f ′(λi)
0 0 . . . f(λi)

 .

Note that λi is the eigenvalue corresponding to the ith Jordan block in J and
ni is the size of the ith Jordan block in J .

6.9.4 Analytic Functions as Polynomials
Let A be an n × n matrix with eigenvalues λ1, . . . , λn. Assume that the first
k eigenvalues of A are distinct, where k ≤ n. Let m1, . . . ,mk be the powers in
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the minimum polynomial of A. If f is an analytic function of s defined on the
spectrum of A and p is a polynomial function of s such that

f (l)(λi) = p(l)(λi), l = 0, . . . ,mi − 1, i = 1, . . . , k,

then f(A) = p(A). We can choose any form of polynomial to express an analytic
function in this way, but we generally choose a polynomial of the form

p(s) = a1s
m−1 + . . .+ am−1s+ am,

where m =
∑k
i=1mi. This allows us to set up a system of m equations that

satisfy the equalities f (l)(λi) = p(l)(λi) for l = 0, . . . ,mi − 1, i = 1, . . . , k, and
solve for the coefficients ai in terms of f (l)(λi). We can then write f(A) as

f(A) = a1A
m−1 + . . . am−1A+ amIn.

6.10 Matrix Exponential
One of the most common analytic matrix functions is the matrix exponential.
The matrix exponential eAt ∈ Rn×n for a given matrix A ∈ Rn×n is defined as

eAt =

∞∑
j=0

1

j!
(At)j = In +At+

A2t2

2!
+ . . .

The matrix exponential has several useful properties:

1. e0n,n = In

2. eA(t+s) = eAteAs

3. e(A+B)t = eAteBt iff AB = BA

4.
(
eAt
)−1

= e−At

5. d
dte

At = AeAt = eAtA

6.10.1 Computing the Matrix Exponential
There are a few different ways to compute the matrix exponential.

1. Method 1: Infinite Series

We can use the infinite series representation to compute the matrix expo-
nential. This is straightforward if A is a nilpotent matrix, or if the terms
of eAt can be recognized as basic transformations of common infinite se-
ries. However, this method is generally difficult to use. Below are some of
the most common infinite series representations.

et =

∞∑
j=0

xj

j!
= 1 + x+

x2

2!
+
x3

3!
+ . . .
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sin t =

∞∑
j=0

(−1)j

(2j + 1)!
x2j+1 = x− x3

3!
+
x5

5!
− . . .

cos t =

∞∑
j=0

(−1)j

(2j)!
x2j = 1− x2

2!
+
x4

4!
− . . .

1

1− x
=

∞∑
j=0

xj = 1 + x+ x2 + . . .

2. Method 2: Laplace Transforms

In some cases, we may be able to use Laplace transforms to compute

eAt = L−1{(sI −A)−1}.

Note that we compute the inverse Laplace transform element-wise. We
generally want to use partial fraction decomposition, so that we can look
up the inverse Laplace transform in a Laplace transform table.

3. Method 3: Diagonal and Jordan Form

IfA is a diagonalizable matrix that admits a diagonalizationA = UΛU−1,

eAt = UeΛtU−1, where eΛt =

e
λ1t

. . .
eλnt

 .
If A is not diagonalizable, we can still represent it in its Jordan form as
A = TJT−1. Now we can write the matrix exponential of A as

eAt = T eJtT−1, where eJt =


eλit teλit . . . 1

(ni−1)! t
(ni−1)eλit

0 eλit . . . 1
(ni−2)! t

(ni−2)eλit

...
...

. . .
...

0 0 . . . teλit

0 0 . . . eλit

 .

6.10.2 Eigenvalues & Eigenvectors
Suppose (λi,ui) is an eigenvalue-eigenvector pair for a matrix A satisfying
Aui = λiui. This implies that eAtui = eλitui. To see this, notice that

eAtui =

∞∑
j=0

tj

j!
Ajui =

∞∑
j=0

tj

j!
λjui = eλitui.

Therefore, if (λi,ui) is an eigenvalue-eigenvector pair for A, then (eλit,ui) is
an eigenvalue-eigenvector pair for eAt. This implies that any eigenvector of A
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is also an eigenvector of eAt. However, in general, an eigenvector of eAt is not
necessarily and eigenvector of A. Consider the following couterexample:

A =

[
0 β
−β 0

]
eAt =

[
cos(βt) sin(βt)
− sin(βt) cos(βt)

]
At time t = 2π

β n, where n is an integer, the matrix exponential is simply the
identity matrix. The standard basis vectors are eigenvectors of the identity
matrix, but they are clearly not eigenvectors of the matrix A. Therefore, the
eigenvectors of eAt are not eigenvectors of A in general.
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Singular Value Decomposition

7.1 Singular Value Decomposition (SVD)

7.1.1 Singular Values
For a square matrix A, λi ∈ C is an eigenvalue of A if there exists a non-zero
vector ui such that Aui = λiui. Only square matrices have eigenvalues, but
matrices generally are not square. However if A is an m×n, then AA∗ is m×m
and A∗A is n× n, so both are square matrices and have eigenvalues.

Let λ1, . . . , λm be the real, non-negative eigenvalues of AA∗. If the rank of A
is r, then r of those eigenvalues will be strictly positive and m− r will be zero.
Let’s assume λ1 ≥ . . . ≥ λr > 0 and λr+1 = . . . = λm = 0. The non-zero
singular values of the matrix A are defined as σi =

√
λi, i = 1, . . . , r.

We also could have let λ1, . . . , λn be the real, non-negative eigenvalues of A∗A.
If the rank of A is r, then r of those eigenvalues will be strictly positive and
n − r will be zero. Let’s assume λ1 ≥ . . . ≥ λr > 0 and λr+1 = . . . = λn = 0.
The non-zero singular values of the matrix A are σi =

√
λi, i = 1, . . . , r.

Therefore, if rank(A) = r, then the non-zero singular values of A are

σi =
√
λi(AA∗) =

√
λi(A∗A), i = 1, . . . , r.

7.1.2 Singular Vectors
Suppose A is an m × n matrix with rank r. The matrix AA∗ is then m ×m
and has m eigenvalues λ1(AA∗), . . . , λm(AA∗) and corresponding eigenvectors
u1, . . . ,um, which satisfy AA∗ui = λi(AA

∗)ui for i = 1, . . . ,m. The vectors
u1, . . . ,um are also referred to as the left singular vectors of A.

The matrix A∗A is n × n and has n eigenvalues λ1(A∗A), . . . , λn(A∗A) and
corresponding eigenvectors v1, . . . ,vn, which satisfy A∗Avi = λi(A

∗A)vi. The
vectors vi that satisfy this equation are the right singular vectors of A.
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7.1.3 Full Form SVD
Suppose A is an m× n matrix with rank r ≤ min(m,n). Let σ1, . . . , σr denote
the singular values of A, u1, . . . ,um denote the left singular vectors of A,
and v1, . . . ,vn denote the right singular vectors. There exist unitary matrices
U ∈ Cm×m and V ∈ Cn×n and a block diagonal matrix Σ ∈ Cm×n such that

A = UΣV ∗, where

U =
[
u1 u2 . . . um

]
∈ Cm×m,

V =
[
v1 v2 . . . vn

]
∈ Cn×n,

Σ =

[
Σr 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]
∈ Cm×n.

The first unitary matrix is composed of the m left singular vectors of A, and
the second unitary matrix is composed of the n right singular vectors of A. The
block diagonal matrix Σ is composed of zero matrices and a diagonal matrix
whose elements are the r singular values of A: Σr = diag(σ1, . . . , σr) ∈ Cr×r.
This is called the full form singular value decomposition (SVD).

7.1.4 Compact Form SVD
Previously, we wrote the full form singular value decomposition (SVD) for the
m × n matrix A with rank r ≤ min(m,n). We can write the SVD in a more
compact form. The first unitary matrix, U , can be broken into two submatrices:
an m× r matrix Ur and an m× (m− r) matrix Umr such that

U =
[
Ur Umr

]
∈ Cm×m, where

Ur =
[
u1 . . . ur

]
∈ Cm×r,

Umr =
[
ur+1 . . . um

]
∈ Cm×(m−r).

In a similar way, the second unitary matrix, V , can be broken into two subma-
trices: an n× r matrix Vr and an n× (n− r) matrix Vnr such that

V =
[
Vr Vnr

]
∈ Cn×n, where

Vr =
[
v1 . . . vr

]
∈ Cn×r,

Vnr =
[
vr+1 . . . vn

]
∈ Cn×(n−r).

Now we can decompose A as

A = UrΣrV
∗
r =

r∑
i=1

σiuiv
∗
i

This is called the compact form singular value decomposition (SVD).
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7.1.5 Range and Null Space
Let A be an m×n matrix with rank r that can be expressed in terms of its com-
pact form SVD as A = UrΣrV

∗
r . This representation allows us to characterize

the range space and null space of A, as well as its Hermitian transpose.

Range Space of A

R(A) = R(Ur) = span({u1, . . . ,ur})

R(A) =
{
y ∈ Cm : y = Urz, z ∈ Cr

}
dimR(A) = dimR(Ur) = r

Range Space of A∗

R(A∗) = R(Vr) = span({v1, . . . ,vr})

R(A∗) =
{
y ∈ Cn : y = Vrz, z ∈ Cr

}
dimR(A∗) = dimR(Vr) = r

Null Space of A

N(A) = R(Vnr) = span({vr+1, . . . ,vn})

N(A) =
{
x ∈ Cn : x = Vnrα, α ∈ Cn−r

}
dimN(A) = dimR(Vnr) = n− r

Null Space of A∗

N(A∗) = R(Umr) = span({ur+1, . . . ,um})

N(A∗) =
{
x ∈ Cm : x = Umrα, α ∈ Cm−r

}
dimN(A∗) = dimR(Umr) = m− r

7.2 Matrix Pseudoinverse
For some matrix A ∈ Cn×m, a pseudoinverse of A is a matrix A† ∈ Cm×n
that satisfies the following criteria, known as the Moore–Penrose conditions:

1. AA†A = A

2. A†AA† = A†

3. (AA†)∗ = AA†

4. (A†A)∗ = A†A
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From conditions one and two, we can see that the pseudoinverse acts like a weak
inverse. While AA† is not necessarily the identity matrix, it does map A to
itself when it left multiplies A. Similarly, AA† is not necessarily the identity
matrix, but it maps A† to itself when it right multiplies A†.
Let A be an m× n matrix with rank r that can be expressed with its full form
SVD as A = UΣV ∗. The Moore-Penrose pseudoinverse of A is defined as

A† = V Σ†U∗, where

Σ† =

[
Σ−1

r 0r×(m−r)

0(n−r)×r 0(n−r)×(m−r)

]
∈ Cn×m,

Σ−1
r = diag

( 1

σ1
, . . . ,

1

σr

)
∈ Cr×r.

We can also write the Moore–Penrose pseudoinverse in compact form as

A† = VrΣ−1
r U∗r ∈ Cn×m.

The pseudoinverse takes on recognizable forms given certain conditions on A.

1. Invertible – If A is invertible (i.e. r = n = m), then A† = A−1.

2. Full Column Rank – If A has full column rank (i.e. r = n ≤ m), then
A†A = V V ∗ = In, so A† is the left inverse of A. For this case,

A† = (A∗A)−1A∗.

3. Full Row Rank – If A has full row rank (i.e. r = m ≤ n), then
AA† = UU∗ = Im, so A† is the right inverse of A. For this case,

A† = A∗(AA∗)−1.
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Symmetric Matrices

8.1 Symmetric Matrices

8.1.1 Spectral Decomposition
Recall that if an n×n matrix is symmetric, then it has n real eigenvalues and n
orthogonal eigenvectors. Let Sn denote the set of n×n symmetric matrices. Any
matrix A ∈ Sn with real eigenvalues λ1, . . . , λn and orthonormal eigenvectors
u1, . . . ,un can be factored into its spectral decomposition as A = UΛUT ,
where U is an orthogonal matrix composed of the eigenvectors of A such that

U =
[
u1 . . . un

]
∈ Cn×n

and Λ is a diagonal matrix whose diagonal entries are the eigenvalues of A:

Λ = diag(λ1, . . . , λn) ∈ Cn×n.

We can also express the symmetric matrix A as a sum of dyads:

A =

n∑
i=1

λiuiu
T
i .

8.1.2 Rayleigh Quotient
Let A be an n × n symmetric matrix with eigenvalues λ1 ≥ . . . ≥ λn and
corresponding orthonormal eigenvectors u1, . . . ,un. The Rayleigh quotient
of A for some n-dimensional vector x is the following fraction:

RA(x) =
xTAx

xTx
.

TheRayleigh quotient theorem says that if λ1 denotes the largest eigenvalue
ofA and λn denotes the smallest eigenvalue, then the following inequalities hold:

λn ≤
xTAx

xTx
≤ λ1, ∀x 6= 0n.
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Furthermore, the largest and smallest eigenvalues of A can be expressed as

λ1 = max
x:||x||2=1

xTAx and λn = min
x:||x||2=1

xTAx.

The maximum value of xTAx is attained for x̂max = u1, where u1 is the
eigenvector corresponding to λ1. Similarly, the minimum value of xTAx is
attained for x̂min = un, where un is the eigenvector corresponding to the λn.

Proof: Because we assumeA is symmetric, it admits the spectral decomposition
A = UΛUT , where U is an orthogonal matrix composed of the eigenvectors of
A and Λ is a diagonal matrix whose diagonal entries are the eigenvalues of A.
If we define the vector y such that y = UTx, then we can see the following:

xTAx = xTUΛUTx = yTΛy

||y||22 = yTy = xTUUTx = xT Inx = xTx = ||x||22

max
||x||2=1

xTAx = max
||y||2=1

yTΛy = max
||y||2=1

n∑
i=1

λiy
2
i

min
||x||2=1

xTAx = min
||y||2=1

yTΛy = min
||y||2=1

n∑
i=1

λiy
2
i

The constraint on y tells us that all of the squared elements of y must sum to
one. Now it is relatively clear that the optimal solution to the maximization
problem is ŷmax = e1 and the optimal solution to the minimization problem
is ŷmin = en, where ei is the ith standard basis vector. Because U is an
orthogonal matrix composed of the eigenvectors of A and we defined y such
that y = UTx, we can also write the relationship x = Uy. Therefore,

x̂max = Uŷmax = Ue1 = u1

x̂min = Uŷmin = Uen = un

Furthermore, the optimal values are given by

max
||x||2=1

xTAx = λ1(1)2 +
n∑
i=2

λi(0)2 = λ1

min
||x||2=1

xTAx =

n−1∑
i=1

λi(0)2 + λn(1)2 = λn

Extension to Singular Values

The Rayleigh quotient also allows us to characterize the singular values of A.
From our previous definitions, we can write:

λmin(ATA) ≤ x
TATAx

xTx
≤ λmax(ATA), ∀x 6= 0
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We can rearrange these inequalities to obtain the following inequalities:

λmin(ATA)||x||22 ≤ ||Ax||22 ≤ λmax(ATA)||x||22

σmin(A)||x||2 ≤ ||Ax||2 ≤ σmax(A)||x||2
These relationships allow us to see how multiplying any n-dimensional vector x
by a matrix A changes the length of that vector. From the Rayleigh quotient
theorem, we can obtain a couple additional relationships for the singular values.

λmax(ATA) = max
x:||x||2=1

xTATAx = max
x:||x||2=1

||Ax||22

σmax(A) =
√
λmax(ATA) = max

x:||x||2=1
||Ax||2

λmin(ATA) = min
x:||x||2=1

xTATAx = min
x:||x||2=1

||Ax||22

σmin(A) =
√
λmin(ATA) = min

x:||x||2=1
||Ax||2

8.1.3 Minmax Principle
The minmax principle is similar to the Rayleigh quotient theorem but is de-
fined for vector subspaces. LetA be an n×n symmetric matrix with eigenvalues
λ1 ≥ . . . ≥ λn and let V be any k-dimensional subspace of Rn, where 1 ≤ k ≤ n.
There exist vectors x,y ∈ V with unit norm ||x||2 = ||y||2 = 1 such that

xTAx ≤ λk and yTAy ≥ λn−k+1.

Furthermore, the minmax principle says that for k ∈ {1, . . . , n},

λk = min
V :dimV=k

max
x∈V :||x||2=1

xTAx = max
V :dimV=n−k+1

min
x∈V :||x||2=1

xTAx.

8.2 Positive (Semi)Definite Matrices

8.2.1 Positive and Negative Definiteness
Let A be an n × n matrix with eigenvalues λ1, . . . , λn and components aij for
i = 1, . . . , n and j = 1, . . . , n. We use A � 0 to express that A is positive
semidefinite (PSD), A � 0 to express that A is positive definite (PD), A � 0
to express that A is negative semidefinite (NSD), and A ≺ 0 to express that A
is negative definite (ND). We define these characterizations as follows:

1. Positive Semidefinite (PSD)

(a) A � 0⇐⇒ xTAx ≥ 0, ∀x ∈ Rn

(b) A � 0⇐⇒ λi ≥ 0, i = 1, . . . , n
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(c) A � 0 =⇒ aii ≥ 0, i = 1, . . . , n

(d) A � 0 =⇒
∑n
i=1

∑n
j=1 aij ≥ 0

2. Positive Definite (PD)

(a) A � 0⇐⇒ xTAx > 0, ∀x ∈ Rn : x 6= 0n

(b) A � 0⇐⇒ λi > 0, i = 1, . . . , n

(c) A � 0 =⇒ aii > 0, i = 1, . . . , n

(d) A � 0 =⇒
∑n
i=1

∑n
j=1 aij > 0

3. Negative Semidefinite (NSD)

(a) A � 0⇐⇒ xTAx ≤ 0, ∀x ∈ Rn

(b) A � 0⇐⇒ λi ≤ 0, i = 1, . . . , n

(c) A � 0 =⇒ aii ≤ 0, i = 1, . . . , n

(d) A � 0 =⇒
∑n
i=1

∑n
j=1 aij ≤ 0

4. Negative Definite (ND)

(a) A ≺ 0⇐⇒ xTAx < 0 : ∀x ∈ Rn, x 6= 0n

(b) A ≺ 0⇐⇒ λi < 0, i = 1, . . . , n

(c) A ≺ 0 =⇒ aii < 0, i = 1, . . . , n

(d) A ≺ 0 =⇒
∑n
i=1

∑n
j=1 aij < 0

From these characterizations, we can see the following relationships:

1. A � 0⇐⇒ −A � 0,

2. A ≺ 0⇐⇒ −A � 0, and

3. A � 0⇐⇒ A � 0 and A is invertible.

8.2.2 Symmetric Positive (Semi)definite Matrices
We denote the set of symmetric positive semidefinite (PSD) matrices in Rn×n

Sn+ = {A ∈ Sn : A � 0}.

We denote the set of symmetric positive definite (PD) matrices in Rn×n

Sn++ = {A ∈ Sn : A � 0}.
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8.2.3 Sylvester’s Criterion
Sylvester’s criterion says that a matrix A ∈ Sn is positive semidefinite if and
only if all its principal minors are non-negative. Similarly, it says that A ∈ Sn
is positive definite if and only if its leading principal minors are strictly positive.

Principal minors and leading principal minors are easiest to understand
for the case of 3× 3 matrices. A 3× 3 matrix A ∈ S3, has seven total principal
minors. Because A is symmetric, I will denote its components such that

A =

a11 a12 a13

a12 a22 a23

a13 a23 a33

 .
The principal minors of the matrix A ∈ S3 are given by:

1. Three principal one-minors

(a) m1 = a11

(b) m2 = a22

(c) m3 = a33

2. Three principal two-minors

(a) m12 = det
[
a11 a12

a12 a22

]
= a11a22 − a2

12

(b) m13 = det
[
a11 a13

a13 a33

]
= a11a33 − a2

13

(c) m23 = det
[
a22 a23

a23 a33

]
= a22a33 − a2

23

3. One principal three minor

(a) m123 = det(A)

Its leading principal minors are m1, m12, and m123.

8.2.4 Schur Complements
Let A ∈ Sn and B ∈ Sm and consider the block diagonal matrix

M =

[
A 0n×m

0m×n B

]
.

We can write the following two implications for this matrix:

M � 0⇐⇒ A � 0, B � 0

M � 0⇐⇒ A � 0, B � 0
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Now let A ∈ Sn, B ∈ Sm, and X ∈ Rn×m and consider the block matrix

M =

[
A X
XT B

]
.

For this block matrix, we can write similar relationships among the blocks:

M � 0 =⇒ A � 0, B � 0

M � 0 =⇒ A � 0, B � 0

If A = 0, then M � 0⇐⇒ B � 0, X = 0

If B = 0, then M � 0⇐⇒ A � 0, X = 0

If we assume B � 0, then the Schur complement matrix of A in M is

SA|M = A−XB−1XT .

Now we can express the following relationships for the symmetric block matrix:

M � 0⇐⇒ SA|M � 0

M � 0⇐⇒ SA|M � 0

If we assume A � 0, then the Schur complement matrix of B in M is

SB|M = B −XTA−1X.

Now we can express the following relationships for the symmetric block matrix:

M � 0⇐⇒ SB|M � 0

M � 0⇐⇒ SB|M � 0

If we cannot assume that A or B is positive definite, then we can still say that

M � 0⇐⇒ A−XTB†XT � 0, R(XT ) ⊆ R(B)

M � 0⇐⇒ B −XTA†X � 0, R(X) ⊆ R(A)

8.2.5 Congruence Transformations
Let A ∈ Sn and B ∈ Rm×n. Consider the product C = BABT ∈ Sm. We can
say the following about this congruence transformation:

1. If A � 0, then C � 0.

2. If A � 0, then C � 0 if and only if rank(B) = m.

3. If B is square and invertible, then A � 0 if and only if C � 0.

4. If B is square and invertible, then A � 0 if and only if C � 0.
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8.2.6 Summations
Let S be the sum of two matrices A ∈ Sn and B ∈ Sn such that S = A +B.
We can deduce the following about the matrix S:

1. A � 0, B � 0 =⇒ S � 0

2. A � 0, B � 0 =⇒ S � 0

3. A � 0, B � 0 =⇒ S � 0

Now let A ∈ Sn++ and B ∈ Sn. Consider the symmetric sum S = AB +BA.
Now the matrix S can tell us the following information about B:

1. S � 0 =⇒ B � 0

2. S � 0 =⇒ B � 0

8.2.7 Matrix Product
For any matrix U ∈ Rm×n, we can say the following about its matrix products:

1. UTU � 0

2. UUT � 0

3. UTU � 0 if and only if U is full column rank (i.e. rank(U) = n)

4. UUT � 0 if and only if U is full row rank (i.e. rank(U) = m)

Additionally, for any symmetric positive semidefinite matrix A ∈ Sn+ with rank
r, there exists a matrix U ∈ Rr×n such that A = UTU . This also implies that
for any symmetric positive definite matrix A ∈ Sn++, there exists an invertible
matrix U ∈ Rn×n such that A = UTU .

8.2.8 Matrix Square Root
For any symmetric matrix A ∈ Sn, we can write the following:

A � 0⇐⇒ ∃B � 0 : A = B2

A � 0⇐⇒ ∃B � 0 : A = B2

The matrix B is unique and called the matrix square root of A. We sometimes
denote B as B = A1/2. Recall that the spectral decomposition theorem says
that any symmetric matrix A can be expressed as A = UΛUT , where the
columns of U are the eigenvectors of A and Λ = diag(λ1, . . . , λn). The matrix
square root is given by B = UΛ1/2UT , where Λ1/2 = diag(

√
λ1, . . . ,

√
λn).
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8.2.9 Partial Order
If (A−B) � 0, then we can write A � B. Similarly, if (A−B) � 0, then we
can write A � B. We call the relationships A � B and A � B partial orders.
When these relationships hold, we can say the following about A and B:

A � B ⇐⇒ xTAx ≥ xTBx, ∀x ∈ Rn

A � B ⇐⇒ xTAx > xTBx, ∀x 6= 0n

Based on these partial order relationships, we can also notice that

max
B:B�A

xTBx = xTAx and min
B:B�A

xTBx = xTAx.

From the partial order relationships given, we can also say that if A � B and
both A and B are positive definite, then B−1 � A−1.

8.2.10 Hadamard’s Inequality
For a matrix A ∈ Sn+ with diagonal elements aii, Hadamard’s inequality says

det(A) ≤
n∏
i=1

aii.
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Matrix Inner Product &
Norms

9.1 Matrix Inner Product
The inner product of two m× n matrices A and B is defined as

〈A,B〉 = tr(ATB) =

m∑
i=1

n∑
j=1

aijbij .

From the properties of the trace, we could equivalently write this definition as

〈A,B〉 = tr(ATB) = tr(BTA) = tr(ABT ) = tr(BAT ).

9.2 Matrix Norms

9.2.1 Properties of Matrix Norms
In order for a matrix function to be considered a norm, it must satisfy the
following three properties for any two matrices A and B and any scalar α:

1. ||A|| ≥ 0 ∀A ∈ Fm×n
||A|| = 0⇐⇒ A = 0m×n

2. ||A+B|| ≤ ||A||+ ||B||, ∀A,B ∈ Fm×n

3. ||αA|| = |α| ||A||, ∀α ∈ F, A ∈ Fm×n

Often, matrix norms also satisfy the sub-multiplicativity property:

||AB|| ≤ ||A|| · ||B||

However, this is not a required property for a valid matrix norm.
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9.2.2 Frobenius Norm
Suppose A is an m × n matrix whose ijth element is aij and whose ith row
vector is aTi . The Frobenius norm is denoted || · ||F and defined as such that

||A||F =

(
m∑
i=1

n∑
j=1

|aij |2
)1/2

=

(
m∑
i=1

||aTi ||22

)1/2

.

If the rank of A is r, we can also express the Frobenius norm as

||A||F =
√

tr(AA∗) =

(
m∑
i=1

λi(AA
∗)

)1/2

=

(
r∑
i=1

σi(A)2

)1/2

.

Equivalenty, we could express the Frobenius norm of A as

||A||F =
√

tr(A∗A) =

(
n∑
i=1

λi(A
∗A)

)1/2

=

(
r∑
i=1

σi(A)2

)1/2

.

Properties of the Frobenious Norm

The Frobenius norm satisfies the sub-multipicativity property, which means that
for any m× n matrix A and any n× p matrix B,

||AB||F ≤ ||A||F ||B||F .

Another interesting property of the Frobenius norm is that for any m×n matrix
A and n-dimensional vector x, the following inequality holds:

||Ax||2 ≤ ||A||F ||x||2.

One final property is that if U and V are two orthogonal matrices, then

||UAV ||F = ||A||F .

9.2.3 Induced Norms
For p ∈ [1,∞), the induced matrix norms have the general form:

||A||p = sup
x6=0n

||Ax||p
|||x||p

= sup
||x||p=1

||Ax||p.

Properties of the Induced Norm

The induced norm satisfies the sub-multipicativity property, which means that
for any m× n matrix A and any n× p matrix B,

||AB||p ≤ ||A||p||B||p.

Based on how we defined the induced norm, we can also deduce that for any
m× n matrix A and any n-dimensional vector x,

||Ax||p ≤ ||A||p||x||p.
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9.2.4 l2 Induced Norm
The l2 induced norm is referred to as the spectral norm or the maximum
singular value. If A is an m× n matrix of rank r, its l2 induced norm is

||A||2 = max
||x||2=1

||Ax||2 = σmax(A) := max
j∈[1,r]

σj(A).

Proof: When discussing the extension of the Rayleigh quotient theorem to
singular values in Section 8.1.2, we showed that

σmax(A) =
√
λmax(ATA) = max

x:||x||2=1
||Ax||2.

Therefore, the l2 induced norm of A is the largest singular value of A.

9.2.5 l1 Induced Norm
The l1 induced norm is referred to as the largest absolute column sum. If A
is an m× n matrix whose columns are a1, . . . , an, its l1 induced norm is

||A||1 = max
||x||1=1

||Ax||1 = max
j∈[1,n]

||aj ||1 = max
j∈[1,n]

m∑
i=1

|aij |.

Proof: To see why this holds, notice from the definition of the l1 norm,

||Ax||1 =

m∑
i=1

|(Ax)i| =
m∑
i=1

∣∣∣∣∣∣
n∑
j=1

aijxj

∣∣∣∣∣∣ ≤
m∑
i=1

n∑
j=1

|aijxj | ≤
m∑
i=1

n∑
j=1

|aij ||xj |.

Under the constraint ||x||1 = 1, the absolute value of all of the elements of x
must sum to one. Given this constraint, the maximum value of the upper bound
on ||Ax||1 is attained for the vector x̂ = eĵ , where ĵ is defined as

ĵ = arg max
j∈[1,n]

m∑
i=1

|aij |.

Notice that for this choice of x̂, we have

||Ax̂||1 =

m∑
i=1

∣∣∣∣∣∣
n∑
j=1

aijxj

∣∣∣∣∣∣ =

m∑
i=1

|aiĵ | = max
j∈[1,n]

m∑
i=1

|aij |.

Therefore, the maximum value of ||Ax||1 under the constraint ||x||1 = 1 (i.e.
the l1 induced norm of A) is the largest absolute row column of A.
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9.2.6 l∞ Induced Norm
The l∞ induced norm is referred to as the largest absolute row sum. If A is
an m× n matrix whose rows are aT1 , . . . , aTm, its l∞ induced norm is

||A||∞ = max
||x||∞=1

||Ax||∞ = max
i∈[1,m]

||aTi ||1 = max
i∈[1,m]

n∑
j=1

|aij |.

Proof: To see why this holds, notice from the definition of the l∞ norm,

||Ax||∞ = max
i∈[1,m]

|(Ax)i| = max
i∈[1,m]

∣∣∣∣∣∣
n∑
j=1

aijxj

∣∣∣∣∣∣ ≤ max
i∈[1,m]

n∑
j=1

|aij ||xj |

≤ max
i∈[1,m]

n∑
j=1

|aij | max
k∈[1,n]

|xk| = max
i∈[1,m]

n∑
j=1

|aij |||x||∞.

Under the constraint ||x||∞ = 1, we can clearly see that the maximum value
of the upper bound on ||Ax||∞ is the largest absolute row sum of A. Now it
remains to show that we can find a vector x, satisfying the constraint on the
l∞ norm, that attains this upper bound. Consider the vector x̂ whose elements
are x̂j = sign(aîj), where î is defined such that

î = arg max
i∈[1,m]

n∑
j=1

|aij |.

Notice that for this choice of x̂, we have

||Ax̂||∞ = max
i∈[1,m]

∣∣∣∣∣∣
n∑
j=1

aij x̂j

∣∣∣∣∣∣ , where
∣∣∣∣∣∣
n∑
j=1

aij x̂j

∣∣∣∣∣∣ =


∣∣∣∑n

j=1 aîjsign(aîj)
∣∣∣ =

∑n
j=1 |aîj | if i = î

∣∣∣∑n
j=1 aijsign(aîj)

∣∣∣ ≤∑n
j=1 |aîj | if i 6= î

.

Now we can see that for this choice of x̂, we can conclude that

||Ax̂||∞ = max
i∈[1,m]

n∑
j=1

|aij |.

Therefore, the maximum value of ||Ax||∞ under the constraint ||x||∞ = 1 (i.e.
the l∞ induced norm of A) is the largest absolute row sum of A.
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9.3 Condition Number
The condition number of a matrix A ∈ Fm×n is the ratio between the largest
and smallest singular values of that matrix. If we assume that A has r singular
values σ1 ≥ . . . ≥ σr > 0, then we can express its condition number as

K(A) =
σ1

σr
=

supx∈Rn:x6=0n

||Ax||2
||x||2

infx∈Rn:x6=0n

||Ax||2
||x||2

=
supx∈Rn:||x||2=1 ||Ax||2
infx∈Rn:||x||2=1 ||Ax||2

.

9.3.1 Condition Number of Invertible Matrices
Now suppose that A is a square n×n matrix. If A is an invertible matrix with
strictly positive singular values σ1 ≥ . . . ≥ σn > 0, then we can equivalently
express its largest and smallest singular values as

σ1 = ||A||2 and σn =
1

||A−1||2
.

This then allows us to express the condition number as

K(A) =
σ1

σn
= ||A||2||A−1||2.

For an invertible matrix A, the condition number gives a quantitative measure
of how closeA is to being singular. The larger the value of the condition number
K(A), the closer A is to being singular.

9.3.2 Subspace Condition Number
Given a subspace V ⊆ Rn, the subspace condition number is defined as

KV (A) =
supx∈V :x 6=0n

||Ax||2
||x||2

infx∈V :x 6=0n

||Ax||2
||x||2

=
supx∈V :||x||2=1 ||Ax||2
infx∈V :||x||2=1 ||Ax||2

.

Note that if the singular value decomposition of A is A = UΣV ∗ and we define
the subspace W = {V ∗x : x ∈ V }, then KV (A) = KW (Σ).

9.4 Eckart-Young-Mirsky Theorem
Suppose we want to find a rank k matrix that best approximates the matrix
A ∈ Rm×n with rank r > k. The optimal solution Â is given by

Â = arg min
B∈Rm×n

||A−B||F

s.t. rank(B) ≤ k
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Suppose that A admits the singular value decomposition A = UΣV T , where
U ∈ Rm×m, Σ ∈ Rm×n, and V ∈ Rn×n. We can express these matrices as

U =
[
U1 U2

]
where U1 ∈ Rm×k, U2 ∈ Rm×(m−k)

Σ =

[
Σ1 0
0 Σ2

]
where Σ1 ∈ Rk×k, Σ2 ∈ R(m−k)×(n−k)

V =
[
V1 V2

]
where V1 ∈ Rn×k, V2 ∈ Rn×(n−k)

The Eckhart-Young-Mirsky theorem says that the optimal solution Â satisfies

Â = U1Σ1V
T

1

Moreover, this solution is unique if and only if σk+1 6= σk, assuming σ1 ≥ . . . ≥
σr > 0 are the non-zero singular values of A.

Proof: https://en.wikipedia.org/wiki/Low-rank_approximation
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Chapter 10

Functions

10.1 Domain and Range
Given two sets X and Y , there is some function f that maps X into Y , which
we express as f : X → Y . The set X is the input space, known as the domain,
and Y is the output space, known as the codomain. For all values x ∈ X,
a valid function f must assign a unique value y = f(x) ∈ Y . If f maps some
x ∈ X to more than one value in Y , as in Figure 10.1, f is not a valid function.

Figure 10.1: The mapping f is not a function because it maps the
point x1 in the domain, X, to both y1 and y2 in the codomain, Y .

The range of f is the set of all values in the codomain to which the function f
can map values in the domain. We express the range as the set {f(x) : x ∈ X}.
The relationship between the codomain and range is shown in figure 10.2.

10.2 Graphs and Level Sets
The graph of a function f with domain X and codomain Y is the set of input-
output pairs the function can attain and is expressed as

graph(f) = {(x, y) ∈ X × Y : y = f(x)}.
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Figure 10.2: The function f maps points in X to points in Y .
The green region, X, is the domain of f, the blue region, Y , is
the codomain, and the purple region is the range.

The epigraph of a function f is the set of input-output pairs the function can
attain and anything above these values. The epigraph of f can be expressed as

epi(f) = {(x, y) ∈ X × Y : y ≥ f(x)}.

A depiction of the graph and epigraph of a function is shown in figure 10.3.

Figure 10.3: The graph of the function, f , is the black line and
the epigraph is the green region.

The level set, or contour line, of a function is the set of points that achieve
exactly some value for a function. The c-level set of the function f is given by

Lc(f) = {x ∈ X : f(x) = c}.

The sublevel set of a function is the set of points that achieve at most a certain
value of the function. The c-sublevel set of the function f is given by

L−c (f) = {x ∈ X : f(x) ≤ c}.

The superlevel set of a function is the set of points that achieve above a certain
value of the function. The c-superlevel set of the function f is given by

L+
c (f) = {x ∈ X : f(x) ≥ c}.
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10.3 Injectivity and Surjectivity
A few important properties of a function are injectivity, surjectivity, and bijec-
tivity. A function f is injective, or one-to-one, if and only if

x1 6= x2 =⇒ f(x1) 6= f(x2), ∀x1, x2 ∈ X.

This means that if there exist two distinct values x1, x2 ∈ X that map to the
same value in the codomain, then f is not injective. A function f is surjective,
or onto, if and only if its range is equal to the codomain Y , meaning that

∃ x ∈ X s.t. y = f(x), ∀y ∈ Y.

A function f is bijective if and only if f is both injective and surjective, meaning

∃! x ∈ X s.t. y = f(x), ∀y ∈ Y.

Figure 10.4 demonstrates the concept of injectivity, surjectivity, and bijectivity.

Figure 10.4: (a) f is injective but not surjective. (b) f is sujective
but not injective. (c) f is bijective (both injective and surjective).

10.4 Function Inner Product & Norms

10.4.1 Function Inner Product
Assume f and g are two square, integrable, Fn-valued functions defined on
[t0, t1]. The inner product of two functions is commonly defined such that

〈f, g〉 =

∫ t1

t0

f(t)∗g(t)dt,

where the f(t)∗ operation is the complex conjugate transpose of f(t). With this
definition of the inner product, the energy of f is defined as

Ef = 〈f, f〉 =

∫ t1

t0

f(t)∗f(t)dt =

∫ t1

t0

||f(t)||22dt.
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10.4.2 Function Norm
Suppose f is a continuous, Fn-valued function defined over the domain [t0, t1].
The L1 norm of f is defined such that

||f ||1 =

∫ t1

t0

||f(t)||dt.

Similarly, L2 norm of f is defined such that

||f ||2 =

(∫ t1

t0

||f(t)||2dt

)1/2

.

Similarly, L∞ norm of f is defined such that

||f ||∞ = max
t∈[t0,t1]

||f(t)||.

Note that for all of these function norms, we can use any vector norm and simply
specify which vector norm we are using to define the function norm.

10.5 Derivative Operators

10.5.1 Gradients
Consider a function f : Fn → F that maps vectors to scalars. For any vector
x ∈ Fn with elements x1, . . . , xn, the gradient of f is defined such that

∇xf(x) =
∂f

∂x
=


∂f
∂x1

...
∂f
∂xn

 ∈ Fn.

Properties of the Gradient

Consider two functions f : Fn → F and g : Fn → F that map vectors to scalars.
The gradient operation exhibits the property of linearity, which says that

∇x

(
αf(x) + βg(x)

)
= α∇xf(x) + β∇xg(x).

The gradient operation also satisfies the product rule, which says that

∇x

(
f(x)g(x)

)
= f(x)∇xg(x) + g(x)∇xf(x).

The gradient operation also satisfies the quotient rule, which says that

∇x

(
f(x)

g(x)

)
=
g(x)∇xf(x)− f(x)∇xg(x)

g2(x)
.
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If we define a function f : Fm → F and g : Fn → Fm, then the composition
of these two functions can be expressed as φ(x) = f(g(x)), where φ : Fn → F.
Now we can define a final property of the gradient, called the chain rule:(

∇xφ(x)
)
i

=
[
∂g1(x)
∂xi

. . . ∂gm(x)
∂xi

]
∇xf(g(x))

∇xφ(x) =


(
∇xφ(x)

)
1

...(
∇xφ(x)

)
n


Common Gradients

Assume x and w are n-dimensional vectors, A is an n× n matrix, and P is an
n× n symmetric matrix. Below are a few common gradients:

1. ∇x

(
xTw

)
= ∇x

(
wTx

)
= w

2. ∇x

(
xTAx

)
= (A+AT )x

3. ∇x

(
xTPx

)
= 2Px

10.5.2 Hessian
Again, consider a function f : Fn → F that maps vectors to scalars. For any
vector x ∈ Fn with elements x1, . . . , xn, the Hessian of f is defined such that

∇2
xf(x) =

∂2f

∂x2
=


∂2f
∂x2

1
. . . ∂2f

∂x1∂xn

...
. . .

...
∂2f

∂xn∂x1
. . . ∂2f

∂x2
n

 ∈ Fn×n.

Assume x and b are n-dimensional vectors, A is an n × n matrix, and c is a
scalar value. It is useful to know the Hessian of the quadratic function:

∇2
x(xTAx+ bTx+ c) = (A+AT ).

Note that if A is a symmetric matrix, then this Hessian is equal to 2A.

10.5.3 Jacobian
Now consider a function f : Fn → Fm that maps vectors to vectors. For any
vector x ∈ Fn with elements x1, . . . , xn, the Jacobian of f is defined such that

Dxf(x) =
∂f

∂x
=


∂f1

∂x1
. . . ∂f1

∂xn

...
. . .

...
∂fm
∂x1

. . . ∂fm
∂xn

 ∈ Fm×n.
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Linear Maps

11.1 Properties of Linear Maps
Let (U,F ) and (V, F ) be two vector spaces over the same field F and let A :
U → V be a map from the set of vectors U to vectors V . For any u ∈ U , we
can write A(u) = v for some v ∈ V . A is considered a linear map if and only
if it satisfies the principle of superposition, which says that

A(α1u1 + α2u2) = α1A(u1) + α2A(u2),

∀α1, α2 ∈ F, ∀u1,u2 ∈ U.

11.2 Matrix Representation
Any linear map between finite dimensional vector spaces can be represented as
matrix multiplication on coordinate vectors. Let A : U → V be a linear map
from (U,F ) to (V, F ), where the dimension of U is n and the dimension of V
is m. Let {uj}nj=1 be a basis for U and {vi}mi=1 be a basis for V . For each
j = 1, . . . , n, there exists a unique set of constants {a1j , . . . , amj} such that

A(uj) =

m∑
i=1

aijvi.

The matrix representation of the linear map A is the m × n matrix A whose
ijth element is aij . To find this matrix representation, we can find the mapping
of each of the basis vectors in U : A(u1), . . . ,A(um). Then for each mapping
A(uj), we can set up the summation equation with the basis vectors in V to
determine the elements of the matrix A.

Note that the matrix representation of A with respect to the standard basis
is simply A =

[
A(u1) . . . A(um)

]
. Additionally, the composition of linear

maps (i.e. B(A(x))) corresponds to matrix multiplication (i.e. BAx).
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11.2.1 Change of Basis
Let (U,F ) and (V, F ) be two linear spaces over the same field F . Suppose
{uj}nj=1 and {ũj}nj=1 are two bases for U and {vi}mi=1 and {ṽi}mi=1 are two bases
for V . Now letA be the matrix representation of the linear mapA : U → V with
respect to the bases {uj}nj=1 and {vi}mi=1, and let Ã be the matrix representation
of the linear map A : U → V with respect to the bases {ũj}nj=1 and {ṽi}mi=1.
The matrices A and Ã are said to be equivalent because they represent the
same linear map, and they respect the following relationship:

Ã = QAP , where

P =
[
u1 . . . un

]−1 [
ũ1 . . . ũn

]
,

Q =
[
ṽ1 . . . ṽm

]−1 [
v1 . . . vm

]
.

11.3 Range and Null Space

11.3.1 Definitions
Given two vector spaces (U,F ) and (V, F ) and a linear map A : U → V , the
range space, or image, of the map A is defined as

R(A) = {v ∈ V : v = A(u), u ∈ U} ⊆ V.

If the matrix representation of A is A, we can also express the range space as

R(A) = {v ∈ V : v = Au, u ∈ U} ⊆ V.

Given the same linear map A, the null space, or kernel, of the map A is

N(A) = {u ∈ U : A(u) = 0V } ⊆ U.

Equivalently, using the matrix representation, we can define the null space as

N(A) = {u ∈ U : Au = 0V } ⊆ U.

The rank of the linear map A is equal to the dimension of the range space,
and the nullity of A is equal to the dimension of the null space. Because the
range space is a subset of the codomain, the rank is less than or equal to the
dimension of the codomain. Similarly, because the null space is a subset of the
domain, the nullity is less than or equal to the dimension of the domain.

11.3.2 Rank-Nullity Theorem
Consider a linear map A : U → V with the matrix representation A ∈ Fm×n.
The rank-nullity theorem states that the rank of A plus the nullity of A is
equal to the dimension of the domain, which we can express as

dimR(A) + dimN(A) = dimU = n.

The rank-nullity theorem is depicted pictorially in figure 11.1.
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Figure 11.1: A is a linear map from the domain U to the
codomain V . The null space of A is a subset of the domain,
as shown in green. The range space of A is a subset of the
codomain, as shown in blue. Notice that the dimension of the
null space is less than the dimension of the domain, and the
dimension of the range space is less than the dimension of the
codomain. In addition, the dimension of the null space and
range space sum to the dimension of the domain.

Proof: To prove the rank-nullity theorem, let’s first denote the dimension of
the null space as dimN(A) = k and the basis of the null space as {u1, . . . ,uk}.
Note that the null space N(A) is a subset of the vector space U , so the basis of
the null space is a set of linearly independent vectors in U . We can extend this
set with n− k different linearly independent vectors to form a full basis for U ,
which we’ll write as {u1, . . . ,uk,uk+1, . . . ,un}. Now the range space of A is

R(A) = span{A(u1), . . . ,A(uk),A(uk+1), . . . ,A(un)}

Recall that we defined {u1, . . . ,uk} to be a basis for the null space of A, which
implies A(u1), . . . ,A(uk) = 0V . Now we can see that the range space of A is

R(A) = span{0V , . . . ,0V ,A(uk+1), . . . ,A(un)} = span{A(uk+1), . . . ,A(un)}.

Now we want to show that the set {A(uk+1), . . . ,A(un)} is actually a basis for
R(A). To do so, we need to prove that the set is linearly independent, which
can be shown through contradiction. Let’s suppose that the set is not linearly
independent and there exist scalars αk+1, . . . , αn that are not all zero such that

αk+1A(uk+1) + . . .+ αnA(un) = 0V .
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Because A is a linear map, we could write this as

A(αk+1uk+1 + . . .+ αnun) = 0V .

This would then imply that

(αk+1uk+1 + . . .+ αnun) ∈ N(A).

Recall that we denoted {u1, . . . ,uk} to be a basis for N(A), which means any
element of the null space could be represented as a linear combination of these
vectors. This implies that there exist scalars α1, . . . , αk such that

(αk+1uk+1 + . . .+ αnun) = (α1u1 + . . .+ αkuk)

(αk+1uk+1 + . . .+ αnun − α1u1 − . . .− αkuk) = 0

(β1u1 + . . .+ βnun) = 0

Now remember that the set {u1, . . . ,uk,uk+1, . . . ,un} is a full basis for U .
Because this set is a basis, the vectors must be linearly independent, and we
cannot find non-zero scalars β1, . . . , βn such that β1u1 + . . .+ βnun = 0.

Therefore, we have found a contradiction to our previous assumption that
{A(vk+1), . . . ,A(vn)} is not a linearly independent set. This set must be
linearly independent and is a basis for the range space of A. Therefore, the
dimension of the range space is dimR(A) = n− k.

To complete our proof of the rank-nullity theorem, let’s recall the dimension of
the vector space dim(U) = n, the dimension of the null space dimN(A) = k,
and the dimension of the range space dimR(A) = n−k. Clearly, (n−k)+k = n,
so we have shown the rank-nullity theorem:

dimR(A) + dimN(A) = dimU.

11.3.3 Sylvester’s Inequality
A similar theorem to the rank-nullity theorem that relates the ranks of two
linear maps is Sylvester’s inequality. Let A : U → V be a linear map with the
matrix representation A ∈ Fm×n and B : W → U be a linear map with the
matrix representation B ∈ Fn×p. The composition A(B(·)) can be represented
by the matrix AB ∈ Fm×p. Sylvester’s inequality states that

dimR(A) + dimR(B)− n ≤ dimR(AB) ≤ min{dimR(A), dimR(B)}

Figure 11.2 helps to demonstrate the concept of Sylvester’s inequality.
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Figure 11.2: B maps vector space W to vector space U , then A
maps U to V . The range space of B is shown in blue, the range
space of A is shown in green, and the range space of AB is
shown in purple. Notice than the range space of AB is smaller
than the range space of A and the range space of B.

Proof: We’ll start with the first inequality. The rank-nullity theorem says that

dimR(A) + dimN(A) = n

dimR(B) + dimN(B) = p

dimR(AB) + dimN(AB) = p

Now, from these three inequalities, notice that

dimR(A) + dimR(B)− n− dimR(AB) = dimN(AB)− dimN(A)− dimN(B)

dimR(A)+dimR(B)−n ≤ dimR(AB) ⇐⇒ dimN(A)+dimN(B) ≥ dimN(AB)

Therefore, to show Sylvester’s inequality is true, it is equivalent to show that
the following relationship holds: dimN(A) + dimN(B) ≥ dimN(AB).

If a vector x is in the null space of B, it satisfies Bx = 0n. It follows that
it must also satisfy ABx = 0m, so the vector x is also in the null space
of AB. Clearly, every element of N(B) is also an element of N(AB), so
N(B) ⊆ N(AB). Let dimN(B) = r1 and dimN(AB) = r2, where r1 ≤ r2

because N(B) ⊆ N(AB). Assume that {v1, . . . ,vr1} is a basis for N(B).
Because N(B) is a subset of N(AB), the basis we defined for N(B) is a set of
linearly independent vectors in N(AB). We can extend this set with r2 − r1

different linearly independent vectors to form a full basis for N(AB), which
we’ll express as {v1, . . . ,vr1 ,vr1+1, . . . ,vr2}. Based on this definition,

ABvi = 0 for 1 ≤ i ≤ r2

Bvi = 0 for 1 ≤ i ≤ r1

Bvi 6= 0 for (r1 + 1) ≤ i ≤ r2
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Now we can define a new set of vectors {zr1+1, . . . ,zr2} such that

zi := Bvi 6= 0 for (r1 + 1) ≤ i ≤ r2

Azi = ABvi = 0 for (r1 + 1) ≤ i ≤ r2

Now if {zr1+1, . . . ,zr2} is a linearly independent set, then it forms a part of the
basis for the null space N(A). Let’s suppose the set is not linearly independent,
then for scalars αr1+1, . . . , αr2 that are not all zero-valued,

αr1+1zr1+1 + . . .+ αr2zr2 = 0

B(αr1+1vr1+1 + . . .+ αr2vr2) = 0

This would imply that the vector αr1+1vr1+1 + . . .+αr2vr2 is in the null space
of B. We previously defined the basis for the null space N(B) as {v1, . . . ,vr1},
which would imply that we can use arbitary scalars to write

αr1+1vr1+1 + . . .+ αr2vr2 = β1v1 + . . .+ βr1vr1

However, recall that {v1, . . . ,vr1 ,vr1+1, . . . ,vr2} is a linearly independent set
of vectors, so we have found a contradiction. The set {zr1+1, . . . ,zr2} is linearly
independent and must form at least a partial basis for N(A). This set contains
r2 − r1 elements, so dimN(A) ≥ r2 − r1. Finally, we can write

dimN(A) + dimN(B) ≥ (r2 − r1) + r1 = r2

dimN(A) + dimN(B) ≥ dimN(AB)

This proves the first inequality. Now we can prove the second inequality by
showing that dimR(AB) ≤ dimR(A) and dimR(AB) ≤ dimR(B).

If a vector y is an element of R(AB), then y = ABx for some vector x ∈ Rp.
We could write this vector as y = Az for some vector z = Bx ∈ Rn, which
implies that the vector y is also an element of R(A). Clearly, every element of
R(AB) is also an element of R(A), so R(AB) ⊆ R(A). This tells us that

dimR(AB) ≤ dimR(A).

Recall that earlier in this problem we showed that N(B) ⊆ N(AB), implying
that dimN(B) ≤ dimN(AB). From the rank-nullity theorem, we also said that
dimR(B) + dimN(B) = p and dimR(AB) + dimN(AB) = p. Now we see that

dimR(AB) ≤ dimR(B).

This shows that the second inequality holds, which completes our proof.
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11.4 A-Invariant Subspaces

11.4.1 A-Invariance
Consider a vector space (V, F ) and a linear map A : V → V with matrix
representation A. A subspace M ⊂ V is considered A-invariant if

x ∈M =⇒ x ∈M.

Some examples of A-invariant subspaces are N(A), R(A), and N(f(A)), where
f is an analytic function. If two subspaces M1 and M2 are A-invariant, then
the intersection of these spaces, M1 ∩ M2, and the sum, M1 + M2, are also
A-invariant. However, the union, M1 ∪M2, is not necessarily A-invariant.

11.4.2 Second Representation Theorem
Consider a vector space (V, F ) and a linear map A : V → V with matrix
representation A ∈ Fn×n. Let V be a finite dimensional vector space that can
be represented as the direct sum of two subspaces such that V = M1 ⊕M2.
Assume dimV = n, dimM1 = k, and dimM2 = n− k. We can express A as

A =

[
A11 A12

A21 A22

]
,

where A11 ∈ Fk×k, A12 ∈ Fk×(n−k), A21 ∈ F(n−k)×k and A22 ∈ F(n−k)×(n−k).
The matrix A11 maps elements in the subspace M1 to M1, A12 maps elements
in M2 to M1, A21 maps elements in M1 to M2, and A22 map M2 to M2.

If M1 is A-invariant, elements in M1 cannot be mapped to M2, which implies
that A21 is the zero matrix. Therefore, A has a representation of the form:

AM1 =

[
A11 A12

0(n−k)×k A22

]
.

If M2 is A-invariant, elements in M2 cannot be mapped to M1, which implies
that A12 is the zero matrix. Therefore, A has a representation of the form:

AM2 =

[
A11 0k×(n−k)

A21 A22

]
.

If both M1 and M2 are both A-invariant, elements in M1 cannot be mapped to
M2 and elements in M2 cannot be mapped to M1, so both A12 and A21 are
matrices of all zeros. Therefore, A has a representation of the form:

AM1M2 =

[
A11 0k×(n−k)

0(n−k)×k A22

]
.

Justification: To understand this theorem, let V = Fn and assume M1 and
M2 can be expressed as M1 = span(e1, . . . , ek) and M2 = span(ek+1, . . . , en)
respectively, where ei is the ith standard basis vector in Fn.
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Any vector x ∈ V can be expressed as

x =

[
x1

x2

]
, where x1 ∈ Fk, x2 ∈ Fn−k.

With this representation of x, we can write

AM1x =

[
A11x1 +A12x2

A22x2

]
and AM2x =

[
A11x1

A21x1 +A22x2

]
.

If x is an element of M1, then it can be expressed in terms of {e1, . . . , ek}, so
x2 = 0n−k. Therefore, if x ∈M1, then our expression for AM1x becomes

AM1x =

[
A11x1

0n−k

]
∈M1.

Now we can see that is x is an element of M1, then AM1x is also an element
of M1, which means that M1 is in fact A-invariant. Therefore, AM1 is a valid
representation for A if M1 is A-invariant.

If x is an element of M2, then it can be expressed in terms of {ek+1, . . . , en},
so x1 = 0k. Therefore, if x ∈M2, then our expression for AM2x becomes

AM2x =

[
0k

A22x2

]
∈M2.

Now we can see that is x is an element of M2, then AM2x is also an element
of M2, which means that M2 is in fact A-invariant. Therefore, AM2 is a valid
representation for A if M2 is A-invariant.

We can use this same argument to show that AM1M2 is a valid representation
for A if both M1 and M2 are A-invariant.

11.5 Adjoints

11.5.1 Definition
Let (U,F ) be a vector space with inner product 〈·, ·〉U and (V, F ) be a vector
space with inner product 〈·, ·〉V . Let A : U → V be a continuous linear map.
The adjoint of A, denoted A∗, is the linear map

A∗ : V → U s.t. 〈v,A(u)〉V = 〈A∗(v),u〉U , ∀u ∈ U,v ∈ V.

Suppose the linear map A is represented by the matrix A. If U = Fn and
V = Fm, then the matrix representation of the adjoint map A∗ is A∗.

Linear Algebra | S. Pohland



CHAPTER 11. LINEAR MAPS

11.5.2 Self-Adjoint Maps
Suppose (V, F ) is a vector space equipped with the inner product 〈·, ·〉V and
A : V → V is a continuous linear map with adjoint A∗ : V → V . We say that
the map A is self-adjoint if and only if A = A∗, or equivalently,

〈x,A(y)〉V = 〈A(x),y〉V , ∀x,y ∈ V.

Now suppose V = Fn and let the linear map A be represented by a matrix
A ∈ Fn×n. The map A is self-adjoint if and only if the matrix A is Hermitian.

11.5.3 Fundamental Theorem of Linear Algebra
Let A : U → V be a linear map with the adjoint A∗. The domain and codomain
of A can be decomposed into two orthogonal subspaces:

1. Domain – U = N(A)⊕R(A∗)

2. Codomain – V = R(A)⊕N(A∗)

From these relationships, we can also see that

1. dimU = dimN(A) + dimR(A∗)

2. dimV = dimR(A) + dimN(A∗)

Figure 11.3 helps to demonstrate the decomposition of the domain and codomain.

Figure 11.3: The linear map A maps elements in the domain
U to the codomain V , and its adjoint, A∗, maps elements in V
to U . The domain is composed of the null space of A and the
range space of A∗, and the codomain is composed of the range
space of A and the null space of A∗.
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This decomposition leads us to the fundamental theorem of linear algebra:

1. R(A) = N(A∗)⊥

2. N(A) = R(A∗)⊥

3. R(AA∗) = R(A)

4. R(A∗A) = R(A∗)

5. N(A∗A) = N(A)

6. N(AA∗) = N(A∗)

Proof (1 and 2): To prove part one of the fundamental theorem of linear al-
gebra, we will first assume y ∈ N(A∗). If y is in the null space of A∗, then
A∗(y) = 0U . By the definition of the adjoint, this implies

〈y,A(x)〉V = 〈A∗(y),x〉U = 〈0U ,x〉U = 0, ∀x ∈ U.

Because y is orthogonal to A(x) for all x ∈ U , we can say that y ∈ R(A)⊥. We
showed y ∈ N(A∗) implies y ∈ R(A)⊥, which tells us that N(A∗) ⊆ R(A)⊥.

Now we will assume y ∈ R(A)⊥. If y is in the orthogonal complement of R(A),
then y must be perpendicular to every element in R(A), which can be expressed
as 〈y,A(x)〉V = 0 for every x ∈ U . By the definition of the adjoint, this implies

〈A∗(y),x〉U = 〈y,A(x)〉V = 0, ∀x ∈ U.

Because A∗(y) is orthogonal to x for all x ∈ U , we know that A∗(y) = 0U ,
so y ∈ N(A∗). We showed y ∈ R(A)⊥ implies y ∈ N(A∗), which tells us that
R(A)⊥ ⊆ N(A∗). Now we can conclude that N(A∗) = R(A)⊥. We can prove
the second part of the fundamental theorem in a very similar way.

Proof (3 and 4): To prove part three of the fundamental theorem of linear
algebra, we will first assume y ∈ R(A). If this is true, then y = A(x) for
some x ∈ U . From the second part of the fundamental theorem, we know
that N(A) = R(A∗)⊥, which means that N(A) and R(A∗) compose the entire
domain, U . Therefore, any x ∈ U can be expressed as x = A∗(ȳ) + z, where
ȳ ∈ V and z ∈ N(A). Because the map A and its adjoint A∗ are linear,

y = A(x) = A(A∗(ȳ) + z) = A(A∗(ȳ)) +A(z) = A(A∗(ȳ)) + 0V = A(A∗(ȳ)).

Now we can see y ∈ R(A) implies y ∈ R(AA∗), which tells us R(A) ⊆ R(AA∗).

Now we will assume y ∈ R(AA∗). If this is true, then y = A(A∗(ȳ)) for some
ȳ ∈ V . If we define x := A∗(ȳ) ∈ U , then we have y = A(x). Now we can
see y ∈ R(AA∗) implies y ∈ R(A), which tells us R(AA∗) ⊆ R(A). Now
we can conclude that R(A) = R(AA∗). We can prove the fourth part of the
fundamental theorem in a very similar way.
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Proof (5 and 6): To prove part five of the fundamental theorem of linear al-
gebra, we will first assume x ∈ N(A). If this is true, then A(x) = 0V , thus

A∗(A(x)) = A∗(0V ) = 0U .

We can see x ∈ N(A) implies x ∈ N(A∗A), which implies N(A) ⊆ N(A∗A).

Now we will assume N(A∗A), which means A∗(A(x)) = 0U . Combining this
observation with the definition of the adjoint, we can notice that

||A(x)||2 = 〈A(x),A(x)〉V = 〈x,A∗(A(x))〉U = 〈x,0U 〉U = 0U

From the first property of vector norms, this finding implies that A(x) = 0U .
Now we can see that x ∈ N(A∗A) implies x ∈ N(A), which tells us that
N(A∗A) ⊆ N(A). Now we can conclude that N(A) ⊆ N(A∗A). We can prove
the sixth part of the fundamental theorem in a very similar way.
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Linear Equations

12.1 Linear Matrix Equation

12.1.1 Existence & Uniqueness of Solution
Consider a linear map A : U → V and its adjoint A∗ : V → U , where U = Fn
and V = Fm. Assume the matrix representation of the map A is given by
A ∈ Fm×n. Suppose we would like to find a solution x ∈ Fn to the linear
equation y = Ax. The solution set for this equation can be expressed as

S = {x ∈ Fn : Ax = y}.

A solution to the given linear equation exists if and only if y is in the range
space of A. If y is not in the range space of A, then S is the empty set. Note
that y is in the range space of A if rank(A) = rank(Ã), where Ã = [A | y].

If x and x̄ are two distinct solutions to the linear equation Ax = y, then
A(x− x̄) = 0, which implies that (x− x̄) ∈ N(A). If x̄ is a known solution to
the linear equation (i.e. y = Ax̄), then the solution set can be given as

Sx̄ = {x = x̄+ z : z ∈ N(A)}.

Therefore, the solution x̄ is unique if and only if N(A) = {0n}. Note that
N(A) = {0n} if and only if the linear map A is injective (one-to-one). Equiva-
lently, N(A) = {0n} if and only if A has full column rank (i.e. rank(A) = n),
which is equivalent to saying that the columns of A are linearly independent

12.1.2 Unique Solution
Suppose the linear equation Ax = y has a unique solution, which we know
occurs if and only if N(A) = {0n}, or equivalently dimN(A) = 0. From the
fundamental theorem of linear algebra, N(A) = R(A∗)⊥. This implies that

dimR(A∗) = dimU − dimN(A) = n− 0 = n.
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From the fundamental theorem of linear algebra, R(A∗A) = R(A∗), so

dimR(A∗A) = dimR(A∗) = n.

A∗A is an n× n matrix, so this finding implies that A∗A has full rank and is
invertible. If we left multiply our linear equation by the matrix A∗, we get

A∗y = A∗Ax.

We just found that if N(A) = {0n}, then the matrix A∗A is invertible. There-
fore, the unique solution in this case is

x = (A∗A)−1A∗y.

12.2 Minimum Norm Solution
Assume that y ∈ R(A), so there exists a solution to the linear equation y = Ax.
Consider the case when the linear mapA is not injective. BecauseN(A) 6= {0n},
the solution set, S, must contain more than one element. Because there are
infinitely many elements inN(A) if its dimension is greater than zero, S actually
contains infinitely many solutions. Generally, we want to select the solution with
the smallest Euclidean norm, which we call the minimum norm solution. We
can express the minimum norm solution, which I denote x̂, as

x̂ = arg min
x:Ax=y

||x||2 = arg min
x∈Sx̄

||x||2.

12.2.1 Surjective Map
In order to minimize the norm of the solution x̂, we should choose x̂ to be
perpendicular to the null space of A. From the fundamental theorem of linear
algebra, the orthogonal complement of N(A) is R(A∗). Therefore, we should
choose x̂ to be in R(A∗). This means there exists a vector v ∈ V such that
x̂ = A∗v. The minimum norm solution must satisfy the linear equation, so

y = Ax̂ = AA∗v.

Let’s consider the case when the map A is surjective (onto). From the definition
of surjectivity, we know that, in this case, R(A) = V , so dimR(A) = dimV .
From the fundamental theorem of linear algebraR(AA∗) = R(A), which implies

dimR(AA∗) = dimR(A) = dimV = m

AA∗ is an m × m matrix, so it has full rank, indicating that it is invertible.
Therefore, assuming A is surjective, we can see that

v = (AA∗)−1y.
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Plugging this expression for v into our equation for x̂, we find that when the
map A is surjective, the minimum norm solution is

x̂ = A∗v = A∗(AA∗)−1y.

This is the minimum norm solution when the linear map A is surjective. Note
that A is surjective if and only if A has full row rank (i.e. rank(A) = m), which
is equivalent to saying that the rows of A are linearly independent

12.2.2 Non-Surjective Map
Now let’s consider the case when the map A is neither injective nor surjective.
In this case, we need to use the singular value decomposition of A to compute
its pseudoinverse A†. The minimum norm solution is now given by

x̂ = A†y.

Recall that when A has full column rank (i.e. r = n ≤ m), A† = (A∗A)−1A∗,
and when A has full row rank (i.e. r = m ≤ n), A† = A∗(AA∗)−1. This aligns
with our previous findings for the solution to the linear equation. Therefore, in
general, we can say that the minimum norm solution to the linear equation is
x̂ = A†y. This tells us that the set of solutions is given by

S = {A†y + z : z ∈ N(A)}.

12.3 Least Squares Solution
Previously we said that a solution to the linear equation y = Ax exists if and
only if y ∈ R(A). Now we want to consider the case when y 6∈ R(A). Now there
is no x ∈ U such that Ax = y, so we aim to find the best possible solution, x̂,
such that the vector ŷ = Ax̂ is the closest possible vector to y within the range
space of A. More formally, we want to solve the following problem:

x̂ = arg min
x

||Ax− y||22.

The solution x̂ is referred to as the least-squares (LS) solution. To compute this
solution, we first compute the gradient of the objective with respect to x:

∇x||Ax− y||22 = ∇x

(
(Ax− y)∗(Ax− y)

)
= ∇x

(
x∗A∗Ax− x∗A∗y − y∗Ax+ y∗y

)
= 2A∗Ax− 2A∗y

Plugging in the optimal solution x̂ and setting it equal to zero, we get

2A∗Ax̂− 2A∗y = 0 =⇒ A∗Ax̂ = A∗y.

By definition, the vector A∗y is in the range space of A∗. By the fundamental
theorem of linear algebra, the range space of A∗ is the same as the range space
of A∗A. Therefore, the vector A∗y is in the range space of A∗A. This tells us
that the equation A∗Ax = A∗y always has at least one solution.
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12.3.1 Injective Map
As we showed previously, if the map A is injective, then A∗A is invertible. In
this case, the least-squares solution is simply

x̂ = (A∗A)−1A∗y.

This looks very similar to the solution we found when y was in the range of A.
The only difference here is that ŷ = Ax̂ is not in the range of A.

12.3.2 Surjective Map
If the A is not injective, then we want to find the minimum norm solution, as
we did previously. Again, we should choose x̂ to be perpendicular to the null
space of A. From the fundamental theorem of linear algebra, this implies that
there exists a vector v ∈ V such that x̂ = A∗v. The minimum norm solution
must satisfy the optimality equation we found for the least squares problem, so

A∗AA∗v = A∗y.

As we showed previously, if the map A is surjective, then AA∗ is invertible.
This observation allows us to find an expression for v in terms of y.

AA∗AA∗v = AA∗y

v = (AA∗)−1y

Now we can see that if A is surjective, then the least-squares solution is simply

x̂ = A∗v = A∗(AA∗)−1y.

Once again, the only difference between this solution and the one we found for
a surjective map when y was in the range of A is that ŷ = Ax̂ 6∈ R(A).

12.3.3 General Map
Finally, as we stated previously, if A is neither injective nor surjective, then

x̂ = A†y.

The set of optimal solutions to the least-squares problem is thus

Xopt = {A†y + z : z ∈ N(A)}.

Any solution within this optimal set, solves the least-squares optimization prob-
lem. However, x̂ = A†y is the unique minimum norm solution.
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12.4 Weighted Least Squares
As shown previously, the ordinary least squares objective is given by

fLS = ||Ax− y||22.

The minimum possible value of fLS is zero, which occurs when Ax = y. The
vector r = Ax − y represents residual terms. If aTi is the ith row of A, then
ri = aTi x− yi is the residual corresponding to the ith element of y.

We can give the residuals relative importance by introducing weights into the
least squares objective. Suppose we want to assign residual ri a relative weight
of wi for i = 1, . . . ,m. To incorporate these weights, we can define the matrix
W = diag(w1, . . . , wm) and express the weighted least squares objective as

fWLS = ||W (Ax− y)||22.

If we define the matrix AW = WA and the vector yW = Wy, then we can
express this weighted least squares objective as

fWLS = ||AWx− yW ||22.

Now that we have put the weighted least squares objective in this form, we can
see that its solution must satisfy the following set of equations:

A∗WAWx = A∗WyW

(WA)∗(WA)x̂ = (WA)∗(Wy)

A∗W ∗WAx̂ = A∗W ∗Wy

If we assume the matrix A∗W ∗WA is invertible, then our solution becomes

x̂ = (A∗W ∗WA)−1A∗W ∗Wy.

12.5 Regularized Least Squares
As shown previously, the ordinary least squares objective is given by

fLS = ||Ax− y||22.

We can add a "regularization" or penalty term φ(x) to the ordinary least squares
objective and express the regularized least squares objective as

fRLS = ||Ax− y||22 + φ(x).

Most often, φ(x) is chosen to be proportional to the Euclidean norm of x. This
type of problem is called the l2-regularized least squares problem and is often
referred to as ridge regression. This objective can be written as

fRR = ||Ax− y||22 + γ||x||22, γ ≥ 0.
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We can write this objective in the form of the ordinary least squares objective
by defining the matrix Ã and vector ỹ such that

Ã =

[
A√
γIn

]
and ỹ =

[
y
0n

]
.

This allows us to express the ridge regression objective as

fRR = ||Ãx− ỹ||22.

Now that we have put the ridge regression objective in this form, we can see
that its solution must satisfy the following set of equations:

Ã∗Ãx = Ã∗ỹ[
A√
γIn

]∗ [
A√
γIn

]
x̂ =

[
A√
γIn

]∗ [
y
0n

]
(A∗A+ γIn)x̂ = A∗y

From our discussion of positive semidefinite matrices in section 8.2, if the con-
stant γ is strictly positive, then the matrix (A∗A+γIn) is necessarily invertible.
In this case the solution to the ridge regression problem is

x̂ = (A∗A+ γIn)−1A∗y.

12.6 Tikhonov Regularization
Tikhonov regularization combines weighted least squares with regularized least
squares, giving us the following objective:

fTR = ||W1(Ax− y)||22 + ||W2(x− x0)||22,

where W1,W2 � 0 are weighting matrices and x0 is some nominal value of x.
For simplicity, let’s define W1 as the diagonal matrix W1 = diag(w1, . . . , wm)
and W2 as the diagonal matrix W2 = diag(γ1, . . . , γn). We can write this
objective in the form of the ordinary least squares objective by defining

Ã =

[
W1A
W2

]
and ỹ =

[
W1y
W2x0

]
.

This allows us to express the Tikhonov regularization objective as

fTR = ||Ãx− ỹ||22.

Now that we have put the weighted least squares objective in this form, we can
see that its solution must satisfy the following set of equations:

Ã∗Ãx = Ã∗ỹ
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[
W1A
W2

]∗ [
W1A
W2

]
x̂ =

[
W1A
W2

]∗ [
W1y
W2x0

]
(A∗W ∗

1W1A+W ∗
2W2)x̂ = A∗W ∗

1W1y +W ∗
2W2x0

If we assume (A∗W ∗
1W1A+W ∗

2W2) is invertible, the solution is simply

x̂ = (A∗W ∗
1W1A+W ∗

2W2)−1(A∗W ∗
1W1y +W ∗

2W2x0).
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